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Chapter 7. Further Applications of Algebra
7.31. Semigroups and Biology—Proofs of Theorems
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Theorem 7.31.2

Theorem 7.31.2

Theorem 7.31.2. There are infinitely many monomorphisms from F21 into
F4. Thus the DNA protein-coding problem has infinitely many solutions.

Proof. Recall that, by the definition of sequences, we have
a1a2 · · · an = a′

1a
′
2 · · · a′

m if and only if n = m and ai = a′
i for all

i ∈ {1, 2, . . . , n}. So every element of the free group A∗ is a unique
product of elements of A; hence A is a generating set of A∗ Often called a
basis of A∗). So every map from A to some semigroup S can be uniquely
extended to a homomorphism from A∗ to S by simply defining the image
of a product of generators as the product of the images. For example,
f (a1a2 · · · an) = f (a1)f (a2) · · · f (an).

Since {a1, a2, . . . , a21} is a
generating set of F21, we only need an injection from {a1, a2, . . . , a21} into
F4; this can then be extended to a homomorphism of F21 into F4 which is
“clearly” injective.
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Theorem 7.31.2

Theorem 7.31.2 (continued)

Theorem 7.31.2. There are infinitely many monomorphisms from F21 into
F4. Thus the DNA protein-coding problem has infinitely many solutions.

Proof (continued). Consider the injection g on {a1, a2, . . . , a21} defined
as:

g(a1) = n1n1n1, g(a2) = n1n1n2, g(a3) = n1n1n3, g(a4) = n1n1n4,
g(a5) = n1n2n1, g(a6) = n1n2n2, g(a7) = n1n2n3, g(a8) = n1n2n4,
g(a9) = n1n3n1, g(a10) = n1n3n2, g(a11) = n1n3n3, g(a12) = n1n3n4,
g(a13) = n1n4n1, g(a14) = n1n4n2, g(a15) = n1n4n3, g(a16) = n1n4n4,
g(a17) = n2n1n1, g(a18) = n2n1n2, g(a19) = n2n1n3, g(a20) = n2n1n4,
g(a21) = n2n2n1.

Then g is injective and so extends to a monomorphism on F21. Notice
that g maps each ai to a word in F4 of length 3. For each n ≥ 4, by using
words of lengths n as the images of the ai ’s we can similar define a
different injective g which extends to a different monomorphism. Therefore
there are infinitely many monomorphism from F21 into F4, as claimed.
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