Applied Abstract Algebra

Chapter 7. Further Applications of Algebra 7.31. Semigroups and Biology—Proofs of Theorems

Table of contents

Theorem 7.31.2

Theorem 7.31.2. There are infinitely many monomorphisms from F_{21} into F_4 . Thus the DNA protein-coding problem has infinitely many solutions.

Proof. Recall that, by the definition of sequences, we have $a_1a_2 \cdots a_n = a'_1a'_2 \cdots a'_m$ if and only if n = m and $a_i = a'_i$ for all $i \in \{1, 2, \dots, n\}$. So every element of the free group A_* is a unique product of elements of A; hence A is a generating set of A_* Often called a basis of A_*). So every map from A to some semigroup S can be uniquely extended to a homomorphism from A_* to S by simply defining the image of a product of generators as the product of the images. For example, $f(a_1a_2 \cdots a_n) = f(a_1)f(a_2) \cdots f(a_n)$.

Theorem 7.31.2

Theorem 7.31.2. There are infinitely many monomorphisms from F_{21} into F_4 . Thus the DNA protein-coding problem has infinitely many solutions.

Proof. Recall that, by the definition of sequences, we have $a_1a_2\cdots a_n = a'_1a'_2\cdots a'_m$ if and only if n = m and $a_i = a'_i$ for all $i \in \{1, 2, \dots, n\}$. So every element of the free group A_* is a unique product of elements of A; hence A is a generating set of A_* Often called a *basis* of A_*). So every map from A to some semigroup S can be uniquely extended to a homomorphism from A_* to S by simply defining the image of a product of generators as the product of the images. For example, $f(a_1 a_2 \cdots a_n) = f(a_1)f(a_2) \cdots f(a_n)$. Since $\{a_1, a_2, \dots, a_{21}\}$ is a generating set of F_{21} , we only need an injection from $\{a_1, a_2, \ldots, a_{21}\}$ into F_4 ; this can then be extended to a homomorphism of F_{21} into F_4 which is "clearly" injective.

Theorem 7.31.2

Theorem 7.31.2. There are infinitely many monomorphisms from F_{21} into F_4 . Thus the DNA protein-coding problem has infinitely many solutions.

Proof. Recall that, by the definition of sequences, we have $a_1a_2\cdots a_n = a'_1a'_2\cdots a'_m$ if and only if n = m and $a_i = a'_i$ for all $i \in \{1, 2, \dots, n\}$. So every element of the free group A_* is a unique product of elements of A; hence A is a generating set of A_* Often called a *basis* of A_*). So every map from A to some semigroup S can be uniquely extended to a homomorphism from A_* to S by simply defining the image of a product of generators as the product of the images. For example, $f(a_1a_2\cdots a_n) = f(a_1)f(a_2)\cdots f(a_n)$. Since $\{a_1, a_2, \dots, a_{21}\}$ is a generating set of F_{21} , we only need an injection from $\{a_1, a_2, \ldots, a_{21}\}$ into F_4 ; this can then be extended to a homomorphism of F_{21} into F_4 which is "clearly" injective.

Theorem 7.31.2 (continued)

Theorem 7.31.2. There are infinitely many monomorphisms from F_{21} into F_4 . Thus the DNA protein-coding problem has infinitely many solutions. **Proof (continued).** Consider the injection g on $\{a_1, a_2, \ldots, a_{21}\}$ defined as:

 $\begin{array}{ll} g(a_1) = n_1 n_1 n_1, & g(a_2) = n_1 n_1 n_2, & g(a_3) = n_1 n_1 n_3, & g(a_4) = n_1 n_1 n_4, \\ g(a_5) = n_1 n_2 n_1, & g(a_6) = n_1 n_2 n_2, & g(a_7) = n_1 n_2 n_3, & g(a_8) = n_1 n_2 n_4, \\ g(a_9) = n_1 n_3 n_1, & g(a_{10}) = n_1 n_3 n_2, & g(a_{11}) = n_1 n_3 n_3, & g(a_{12}) = n_1 n_3 n_4, \\ g(a_{13}) = n_1 n_4 n_1, & g(a_{14}) = n_1 n_4 n_2, & g(a_{15}) = n_1 n_4 n_3, & g(a_{16}) = n_1 n_4 n_4, \\ g(a_{17}) = n_2 n_1 n_1, & g(a_{18}) = n_2 n_1 n_2, & g(a_{19}) = n_2 n_1 n_3, & g(a_{20}) = n_2 n_1 n_4, \\ g(a_{21}) = n_2 n_2 n_1. \end{array}$

Then g is injective and so extends to a monomorphism on F_{21} . Notice that g maps each a_i to a word in F_4 of length 3. For each $n \ge 4$, by using words of lengths n as the images of the a_i 's we can similar define a different injective g which extends to a different monomorphism. Therefore there are infinitely many monomorphism from F_{21} into F_4 , as claimed. \Box

Theorem 7.31.2 (continued)

Theorem 7.31.2. There are infinitely many monomorphisms from F_{21} into F_4 . Thus the DNA protein-coding problem has infinitely many solutions. **Proof (continued).** Consider the injection g on $\{a_1, a_2, \ldots, a_{21}\}$ defined as:

 $\begin{array}{ll} g(a_1) = n_1 n_1 n_1, & g(a_2) = n_1 n_1 n_2, & g(a_3) = n_1 n_1 n_3, & g(a_4) = n_1 n_1 n_4, \\ g(a_5) = n_1 n_2 n_1, & g(a_6) = n_1 n_2 n_2, & g(a_7) = n_1 n_2 n_3, & g(a_8) = n_1 n_2 n_4, \\ g(a_9) = n_1 n_3 n_1, & g(a_{10}) = n_1 n_3 n_2, & g(a_{11}) = n_1 n_3 n_3, & g(a_{12}) = n_1 n_3 n_4, \\ g(a_{13}) = n_1 n_4 n_1, & g(a_{14}) = n_1 n_4 n_2, & g(a_{15}) = n_1 n_4 n_3, & g(a_{16}) = n_1 n_4 n_4, \\ g(a_{17}) = n_2 n_1 n_1, & g(a_{18}) = n_2 n_1 n_2, & g(a_{19}) = n_2 n_1 n_3, & g(a_{20}) = n_2 n_1 n_4, \\ g(a_{21}) = n_2 n_2 n_1. \end{array}$

Then g is injective and so extends to a monomorphism on F_{21} . Notice that g maps each a_i to a word in F_4 of length 3. For each $n \ge 4$, by using words of lengths n as the images of the a_i 's we can similar define a different injective g which extends to a different monomorphism. Therefore there are infinitely many monomorphism from F_{21} into F_4 , as claimed. \Box