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7.31. Semigroups and Biology

Note. Recall that a semigroup is a set S together with an associative binary

operation ◦ defined on it (see Definition 7.28.1). If s ◦ t = t ◦ s for all s, t ∈ S then

S is a commutative semigroup. Recall that for A a nonempty set, the set A∗ of all

finite sequence (a1, a2, . . . , an) = a1, a2, . . . , an where n ∈ N and ai ∈ A forms a free

semigroup, (A∗, ∗), where the binary operation is concatenation:

a1a2 · · · an ∗ a′
1a

′
2 · · · a′

m = a1a2 · · · ana
′
1a

′
2 · · · a′

m

(see Definiton 28.20). In this section we consider applications of semigroups and

free semigroups to genetic crossings of organisms and cellular growth.

Example 7.31.1. Consider a strain of cattle which can be black or brown, and

monochromatic or spotted. Suppose that black is a dominant trait over brown,

and that monochromatic is a dominant trait over spotted. This yields four possible

types of cattle:

a: black and monochromatic c: brown and monochromatic

b: black and spotted d: brown and spotted.

We treat this differently here from a traditional biological setting (as Lidl and Pilz

comment on page 357 when they state “In general, the table for breeding operations

is more complicated”). We assume that when an individual displaying a dominant

trait can only have offspring which display the dominant trait (so we are not assum-

ing a presence of a dominant allele and a recessive allele for which the phenotype

of the dominant trait gives ambiguity of the genotype, since the individual could
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either be homozygous dominant or heterozygous). For more details on biologically

realistic models, see my online notes for Integrative Biology and Statistics (BIOL

1810) on Evolution Module: 6.1 Hardy-Weinberg (notice the “One-Locus/Two Al-

leles” model). This simplifying assumption allows us define a binary operation ∗

on the four types of cattle. For example, a type b strain (having the dominant color

black and the recessive pattern spotted) when crossed with a type c strain (having

the recessive color brown and the dominant pattern monochromatic) will produce

progeny that are of type a (black and monochromatic). We indicate this by writing

as b∗c = a. Similarly, we get the following table representing the binary operation:

∗ a b c d

a a a a a

b a b a b

c a a c c

d a b c d

We still need to check associativity (somewhat tedious), but it holds. So S =

({a, b, c, d}, ∗) is, in fact, a semigroup. Since the table is symmetric with respect

to the main diagonal, then S is a commutative semigroup. We also have element d

as the identity, so in addition S is commutative monoid.

Note. The molecule which carries our genetic information is DNA (“deoxyri-

bonucleic acid”). It is a two-stranded double helix. Each strand of a sequence of

nucleotides, A (Adenine), T (Thymine), C (Cytosine), and G (Guanine). These

nucleotides pair up in “base pairs” with A and T binding together, and C and

G binding together. For more details on structure of DNA, see my online notes

https://faculty.etsu.edu/gardnerr/Symbiosis/Hardy-Weinberg-Notes-revised.pdf
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used in Independent Study (MATH 5900) classes on Evolutionary Genetics and

Mathematical Biology on Introduction to Molecular Genetics. In this section, we

denote the nucleotides as n1, n2, n3, n4, so that a strand of DNA can then be in-

terpreted as a word over the set {n1, n2, n3, n4} (in the sense of free groups and

free semigroups). mRNA (messenger ribonucleic acid) binds to DNA to “read”

the DNA, decouples from the DNA, and is then used to transcribe protein chains

made up of amino acids. There are 21 different amino acids produced in this way

which we denote a1, a2, . . . , a21. The protein chains can then be thought of as a

word over {a1, a2, . . . , a21} (in the sense of free groups and free semigroups). We

assume that the sequence of amino acids in a protein chain uniquely determine

the sequence of nucleotides in the DNA molecule. We denote the free semigroup

on set {n1, n2, n3, n4} as F4 and denote the free semigroup on set {a1, a2, . . . , a21}

as F21. The “DNA protein coding problem” is the question: “How many, if any,

monomorphisms are there from F21 into F4?” The next theorem show that there

are infinitely many.

Theorem 7.31.2. There are infinitely many monomorphisms form F21 into F4.

Thus the DNA protein-coding problem has infinitely many solutions.

Note. In the proof of Theorem 7.31.2, we showed that there are infinitely many

desired monomorphisms by only considering words in F4 of length 3. In fact,

DNA protein coding is based on converting triplets of nucleotides (called codons)

through mRNA into individual proteins. So the use of words in length 3 in F4

carries biological realism.

https://faculty.etsu.edu/gardnerr/popgen/syllabus.htm
https://faculty.etsu.edu/gardnerr/mathbio/sillsum2010.html
https://faculty.etsu.edu/gardnerr/mathbio/gene.pdf
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