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1.2. Basic Elements

Note. In this section, we state several definitions we need to get started. We

consider three examples to illustrate the definitions.

Definition. The unknown quantity # which affects the discussion process in the
state of nature. The set of all possible state of nature is denoted ©. When an
experiment is performed to gather information about 6, 0 is a parameter and © is

the parameter space.

Definition. A loss function L(0,a) is a real valued function with domain © x .7,
where o7 is the set of all possible actions (that is, decisions), and L(6,a) > —K >
—oo for all (6,a) € ©® x o/ and for some —K € R.

Note. We consider how to determine a loss function in Chapter 2.

Note/Definition. Parameter 6 is estimated by random variable X. When we
experiments are performed to estimate €, the outcomes of the experiments will
be denoted X = (X7, Xs,...,X,) (we denote vectors with boldfaced fonts). A
particular realization of random variable X is denoted x. The set of all possible

outcomes of the experiments is the sample space of X, denoted 2 . For event

A C o, we let Py(A) = Py(X € A) denote the probability of the event A when
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6 is the true state of nature. We denote the probability density function or X

when 6 is the true state of nature as f(x|f). If X is a continuous random variable,

then Py(A) = / f(z]0) dz and if X is a discrete random variable then Py(A) =
A

Z f(x]6). Notice that Berger mentions Lebesgue measure in connection with a
rinA
continuous random variable. Lebesgue measure and integration are the topics of

ETSU’s Real Analysis 1 (MATH 5210); see my online notes for Real Analysis 1
for more details. In fact, a graduate class in probability would make extensive use

of these ideas; see my online notes for Measure Theory Based Probability (not a

formal ETSU class).

Definition. The ezpectation over X of function h(x), for a given value of 6, is

[ 3(x) f(x]0)dz  (continuous case),

Y vea ( )f(x]6) (discrete case).

In both cases the continuous and the discrete case we denote the expectation as

Eylh(X)] = /% h(z) dF (2]0).

Eg[h(X)] =

Note. We may take Fy[h(X)] = / h(z) dFX(z|0) simply as notation for the
computations above, or equivalently %Ve may interpret it as a Riemann-Stieltjes
integral where FX(x]6) is the cumulative distribution function of X. This allows
us to encompass both continuous and discrete cases in one computation. De-
tails on Riemann-Stieltjes integrals (and the use of the Dirac-Delta distribution)
are in my online notes for Analysis 1 (MATH 4217/5217) on Section 6.2. Some

Properties and Applications of the Riemann Integral. Information on the more


https://faculty.etsu.edu/gardnerr/5210/notes1.htm
https://faculty.etsu.edu/gardnerr/Probability/notes.htm
https://faculty.etsu.edu/gardnerr/4217/notes/6-3.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/6-3.pdf
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general Lebesgue-Stieltjes integral is covered in my online notes for Measure The-
ory Based Probability (not a formal ETSU class) on Section 1.4. Lebesgue-Stieltjes
Measure and Distribution Functions. Since F*(z]@) is the cumulative distribution
function of X given 6, then we can also calculate the probability of event A as

Py(A) = / dF¥(z|f) in both the continuous and discrete cases.
A
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