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1.2. Basic Elements

Note. In this section, we state several definitions we need to get started. We

consider three examples to illustrate the definitions.

Definition. The unknown quantity θ which affects the discussion process in the

state of nature. The set of all possible state of nature is denoted Θ. When an

experiment is performed to gather information about θ, θ is a parameter and Θ is

the parameter space.

Definition. A loss function L(θ, a) is a real valued function with domain Θ×A ,

where A is the set of all possible actions (that is, decisions), and L(θ, a) ≥ −K >

−∞ for all (θ, a) ∈ Θ×A and for some −K ∈ R.

Note. We consider how to determine a loss function in Chapter 2.

Note/Definition. Parameter θ is estimated by random variable X. When we

experiments are performed to estimate θ, the outcomes of the experiments will

be denoted X = (X1, X2, . . . , Xn) (we denote vectors with boldfaced fonts). A

particular realization of random variable X is denoted x. The set of all possible

outcomes of the experiments is the sample space of X, denoted X . For event

A ⊂ A , we let Pθ(A) = Pθ(X ∈ A) denote the probability of the event A when
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θ is the true state of nature. We denote the probability density function or X

when θ is the true state of nature as f(x|θ). If X is a continuous random variable,

then Pθ(A) =

∫
A

f(x|θ) dx and if X is a discrete random variable then Pθ(A) =∑
xinA

f(x|θ). Notice that Berger mentions Lebesgue measure in connection with a

continuous random variable. Lebesgue measure and integration are the topics of

ETSU’s Real Analysis 1 (MATH 5210); see my online notes for Real Analysis 1

for more details. In fact, a graduate class in probability would make extensive use

of these ideas; see my online notes for Measure Theory Based Probability (not a

formal ETSU class).

Definition. The expectation over X of function h(x), for a given value of θ, is

Eθ[h(X)] =


∫

X j(x)f(x|θ) dx (continuous case),∑
x∈X h(x)f(x|θ) (discrete case).

In both cases the continuous and the discrete case we denote the expectation as

Eθ[h(X)] =

∫
X

h(x) dFX(x|θ).

Note. We may take Eθ[h(X)] =

∫
X

h(x) dFX(x|θ) simply as notation for the

computations above, or equivalently we may interpret it as a Riemann-Stieltjes

integral where FX(x|θ) is the cumulative distribution function of X. This allows

us to encompass both continuous and discrete cases in one computation. De-

tails on Riemann-Stieltjes integrals (and the use of the Dirac-Delta distribution)

are in my online notes for Analysis 1 (MATH 4217/5217) on Section 6.2. Some

Properties and Applications of the Riemann Integral. Information on the more

https://faculty.etsu.edu/gardnerr/5210/notes1.htm
https://faculty.etsu.edu/gardnerr/Probability/notes.htm
https://faculty.etsu.edu/gardnerr/4217/notes/6-3.pdf
https://faculty.etsu.edu/gardnerr/4217/notes/6-3.pdf
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general Lebesgue-Stieltjes integral is covered in my online notes for Measure The-

ory Based Probability (not a formal ETSU class) on Section 1.4. Lebesgue-Stieltjes

Measure and Distribution Functions. Since FX(x|θ) is the cumulative distribution

function of X given θ, then we can also calculate the probability of event A as

Pθ(A) =

∫
A

dFX(x|θ) in both the continuous and discrete cases.
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https://faculty.etsu.edu/gardnerr/Probability/notes/Prob-1-4.pdf
https://faculty.etsu.edu/gardnerr/Probability/notes/Prob-1-4.pdf

