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Chapter 1. Basic Counting

Note. In this first chapter, we present the “most elementary techniques” for enu-

meration. The techniques will increase in difficulty in the following chapters. No-

tationally, we denote the natural numbers, integers, rationals, reals, and complex

numbers as usual: N, Z, Q, R, and C, respectively. In this book, the natural

numbers are taken as N = {1, 2, 3, . . .} (which is, surprisingly, not universal) and

we denote the nonnegative integers as P = {0, 1, 2, 3, . . .}. Throughout this course,

whenever we refer to the cardinality of a set we will assume that it is

finite! Cardinalities of infinite sets can be exotic (as one sees in a set theory class),

but we can come up with plenty of problems related to finite sets. . .

1.1. The Sum and Product Rules for Sets

Note. In this section, we start with the Sum Rule and the Product Rule concerning

cardinalities of (finite) sets. We introduce a dominos-style tiling problem and use

it to introduce the Fibonacci numbers. In so doing, we see our first combinatorial

proof (see Corollary 1.1.3).

Note. You have no doubt seen the Sum Rule and Product Rule for cardinalities

of sets. You would see it in Foundations of Probability and Statistics-Calculus

(MATH 2050), Mathematical Reasoning (MATH 3000; see my online notes for this

class on Section 4.1. Cardinality; Fundamental Counting Principles, see Theorems

4.14 and 4.17), or Applied Combinatorics and Problem Solving (MATH 3340).

Before stating these results, we introduce some notation that may be new to you.

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-1.pdf
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For finite set S, we denote its cardinality (that is, the number of elements in set S)

as |S| or $S. If two sets S and T are disjoint, then we denote their disjoint union

as S ] T ; a more common notation for this (in the analysis world) is S ∪· T .

Lemma 1.1.1. Let S and T be finite sets.

(a) Sum Rule. If S ∩ T = ∅, then |S ] T | = |S|+ |T |.

(b) Product Rule. For any finite sets, |S × T | = |S| · |T |.

Note. Recall that a bijection between sets S and T is a function f : S → T such

that f is injective (or “one to one) and surjective (or onto). Recall that two sets

have the same cardinality (by definition) if there is a bijection between the sets; the

holds for both finite or infinite sets (though we are not concerned with infinite sets

here). See my online notes for Mathematical Reasoning (MATH 3000) on Section

4.1. Cardinality; Fundamental Counting Principles (notice Definition 4.1).

Note. Fibonacci (circa 1170–circa 1245), or Leonardo of Pisa, is best know for au-

thoring Liber Abaci (“Book of Calculation”) in 1202 that resulted in the widespread

use of the Hindu-Arabic number system throughout Europe. In this book he men-

tions what is now known as the Fibonacci sequence, though the sequence had been

known in Indian mathematics well before Fibonacci. He described it in terms of

the number of rabbits present in an environment, given a founding pair (with an

oversimplification of the actual biology). This is described in more detail in my

online notes for Linear Algebra (MATH 2010) on Section 5.1. Eigenvalues and

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-1.pdf
https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-4-1.pdf
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Eigenvectors (notice the first example, which introduces the Fibonacci sequence).

The sequence is defined by the recursive equation Fn = Fn−1 +Fn−2 for n ≥ 2, with

the initial values F0 = 0 and F1 = 1. The terms Fn are the Fibonacci numbers.

A general formula for Fn can be derived by diagonalizing a matrix and raising it

to the nth power, as is done in Linear Algebra; see Section 5.3. Two Applications

(see “Page 318 Example 2” which gives a formula for the nth Fibonacci number).

You may have also encountered the Fibonacci sequence in Mathematical Reasoning

(MATH 3000); see my online notes for Mathematical Reasoning on Section 2.10.

Mathematical Induction and Recursion, which briefly introduces the Fibonacci se-

quence in the setting of recursion. In this class, we give a formula for Fn in Section

3.6. Recurrence Relations and Generating Functions.

Note. We next give a “combinatorial interpretation” of the Fibonacci numbers.

That is, we seek a sequence of sets S0, S1, S2, . . . such that #Sn = Fn for all n (other

than the artificial rabbit story given in Liber Abaci). Consider a row of squares.

We have access to two types of tiles, dominos which can cover two squares and

monominos which cover one square. A tiling of the row is a set of tiles which covers

each square exactly once. Let Tn be the set of tilings of a row of n squares. Figure

1.1 gives T3. The next result relates the Fibonacci numbers and #Tn.

Figure 1.1. The 3 tilings of T3.

https://faculty.etsu.edu/gardnerr/2010/c5s1.pdf
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Theorem 1.1.2. For n ≥ 1 we have Fn = #Tn−1.

Note. We can use this relationship between the Fibonacci numbers and #T to

give an identity concerning the Fibonacci numbers.

Corollary 1.1.3. For m ≥ 1 and n ≥ 0 we have Fm+n = Fm−1Fn + FmFn+1.

Note. The technique of proof given for Corollary 1.1.3 is a “combinatorial proof”

since it involves counting discrete objects. Sagan state (see page 4): “. . . combinatorial

proofs are often considered to be the most pleasant, in part because they can be

more illuminating than demonstrations just involving formal manipulations.”
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