
2.1. Turing Machine Basics 1

Chapter 2. Turing Machines

Note. A physical model of a Turing machine involves a tape of symbols ‘0’ and

‘1’, a head to read the tape, the ability to write on the tape, a way to advance the

tape left or right, and a set of instructions to move the machine internally between

different states.

This image is from the Wikipedia webpage on Turing Machines (accessed

6/15/2022)

2.1. Turing Machine Basics

Note. In this section, we give a brief informal description of a Turing machine

and then state a very formal definition. We introduce some terminology and give

several examples.

Note. A Turing machine is actually very elementary. It consists of an input which

is a string of symbols. The machine can (1) move a “cursor” left and right on the

string, (2) write on the current position of the cursor, and (3) “branch” depending

https://en.wikipedia.org/wiki/Turing_machine#/media/File:Turing_Machine_Model_Davey_2012.jpg


2.1. Turing Machine Basics 2

on the value of the current symbol. We will see that every a Turing machine can

express every algorithm and simulate any programming language.

Note. In the popular level book by William Cook, In Pursuit of the Traveling

Salesman: Mathematics at the Limits of Computation, Princeton University Press

(2012), a Turing machine is described as follows (see page 169):

Turing’s machine has a tape for holding symbols, a head that moves

along the tape reading and writing symbols in individual cells, and

a controller to guide the read/write head. The machine also has a

finite set of states, with two special states being initial and halt. The

controller is actually a table that indicates what the machine should do

if it is in a particular state s and it reads a particular symbol x. The

“what it should do” is to print a new symbol x′ on the cell of the tape,

move the head either left or right one cell, and enter a new state s′. To

solve a problem, the machine starts in its initial state, with the input

to the problem written on the tape; it terminates when it reaches the

halt state.

As an example, Cook considers the case of a string of 0’s and 1’s and addresses

the question of whether the numbers of 1’s is even or odd. The set of states is

{initial, odd, even, halt}. The symbols are ‘0’ and ‘1,’ along with a blank which we

denote as ‘ ’ here (the blank is used to halt the machine). The controller is given

by the transition table in the figure below (Figure 9.1 on page 170 from Cook’s

book). There is a row of the table for each of the symbols and a column for each

state other than the halt state. The table entries are triples which give the symbol

to write, the direction to move the head on the tape, and the next state.



2.1. Turing Machine Basics 3

The machine starts in the initial state and the head reads the symbol in the first

cell. If the symbol is a blank then the machine prints a ‘0,’ the head does not move,

and then the machine goes into the halt state. If, instead, the head reads a ‘0’ in

the first cell then the machine prints a blank, the head advances to the right, and

the machine enters the state even (since there are no 1’s read at this stage). If the

head reads a ‘1’ in the first cell then the machine prints a blank, the head advances

to the right, and the machine enters the state odd (since there is one 1 at this stage.

Similarly, if the machine is in a state of odd, respectively even, and the head reads

a ‘0’ in the current cell, then the machine prints a blank, the head advances to the

right, and the machine enters the state odd, respectively even (since a ‘1’ was not

read then the parity of the number of 1’s remains unchanged). If the machine is

in a state of odd, respectively even, and the head reads a ‘1’ in the current cell,

then the machine prints a blank, the head advances to the right, and the machine

enters the state even, respectively odd (since a ‘1’ was read then the parity of the

number of 1’s changes). Finally, if the machine is in a state of odd, respectively

even, and the head reads a blank in the current cell, then the machine prints a ‘1’,

respectively ‘0’, the head does not move, and the machine goes into the halt state.

In this way, the original sequence of 0’s and 1’s is appended with a ‘0’ if there are

an even number of 1’s in the original sequence, and is appended with a ‘1’ if there

is an odd number of 1’s in the original sequence.



2.1. Turing Machine Basics 4

Note. Now we turn to a very formal definition of a Turing machine.

Definition 2.1. A Turing machine is a quadruple M = (K, Σ, δ, s). Here K is a

finite set of states; s ∈ K is the initial state. Σ is a finite set of symbols (we say Σ is

the alphabet of M). We assume that K and Σ are disjoint sets. Σ always contains

the special symbols t (the blank) and . (the first symbol). Finally, δ is a transition

function, which maps K×Σ to (K∪{h, “yes”, “no”})×Σ×{←,→,−}. We assume

that h (the halting state), “yes” (the accepting state), “no” (the rejecting state),

and the cursor directions ← for “left,” → for “right,” and − for “stay,” are not in

K ∪ Σ.

Note. The controller or transition table of Cook’s example corresponds to the δ

of Definition 2.1. Notice that δ maps K × Σ (that is, ordered pairs consisting of

a state and a symbol, just as in columns and rows of Cook’s transition table) to

triples of (K∪{h, “yes”, “no”})×Σ×{←,→,−} (that is, ordered triples consisting

of a state [along with the new states h, “yes,” and “no”], a symbol to be printed,

and movement of the head; though the order of these triples does not agree with

the order used by Cook).

Note 2.1.A. More precisely, the function δ takes the current state q ∈ K and the

current symbol σ ∈ Σ and produces δ(q, σ) = (p, ρ, D) (technically, we should have

δ((q, σ)), but we suppress the unnecessary parentheses). In this triple, p is the next

state, ρ is the symbol overwritten on σ, and D ∈ {←,→,−} is the direction in



2.1. Turing Machine Basics 5

which the cursor will move. When symbol σ = ., we will require that for any state

q ∈ K that

δ(q, σ) = δ(q, .) = (p, .,→) = (p, ρ, D)

for some state p ∈ K. In other words, symbol . always directs the cursor to the

right and is not erased (well, it is overwritten with itself since we require parameter

ρ = .). The machine starts in initial state s, so the the machine processes the

step δ(s, .) = (p, .,→) which results in the cursor moving to the right and entering

state p (which is determined from the definition of δ). Notice that cursor therefore

can never move to the left of .. By convention, we start with a finite string of

symbols, denoted x, that has . as the first symbol and no where else in x, and that

does not contain the blank symbol t (though we may think of the last symbol as

being followed by blanks). However, the cursor may write t at any position other

than the first position. The cursor can move to the right of the last symbol in the

string and can write a symbol there. The machine stops when it reaches one of the

halting states h, “yes,” or “no.”

Definition. The initial string x, preceded by . (not part of x), containing .

nowhere else, and not containing t, is the input of the Turing machine M . When

M enters reaches one of the halting states, the M has halted. If it reaches state

“yes” the machine accepts its input x. If it reaches the state “no” the machine

rejects its input x. If M halts on input x (as opposed to not halting) by reaching

state “yes” or “no” then we define the output M(x) as “yes” or “no,” respectively.

If M halts on input x by reaching state h then we define the output M(x) as the

string y of M at the time of halting (called the output of the computation), where



2.1. Turing Machine Basics 6

by convention the first symbol . is dropped and the last symbol of y is not t (so

that blanks are truncated from the right end, if necessary, and we allow for the

possibility that y is empty). We denote the case that M does not halt on input x

and M(x) = →.

Example 2.1. Consider the Turing machine M = (K, Σ, δ, s) where K = {s, q, q0, q1},

Σ = {0, 1,t, .}, and δ is as follows (left):

p ∈ K σ ∈ Σ δ(p, σ)

s 0 (s, 0,→)

s 1 (s, 1,→)

s t (q,t,←)

s . (s, .,→)

q 0 (q0,t,→)

q 1 (q1,t,→)

q t (q,t,−)

q . (q, .,→)

q0 0 (s, 0,←)

q0 1 (s, 0,←)

q0 t (s, 0,←)

q0 . (h, .,→)

q1 0 (s, 1,←)

q1 1 (s, 1,←)

q1 t (s, 1,←)

q1 . (h, .,→)

0. s .010

1. s .010

2. s .010

3. s .010

4. s .010t

5. q .010t

6. q0 .01 t t

7. s .01t0

8. q .01 t 0

9. q1 .0 t t0

10. s .0t10

11. q .0 t 10

12. q0 . t t10

13. s .t010

14. q . t 010

15. h .t010



2.1. Turing Machine Basics 7

We take the input as 010. This produces the computation given above (right),

called the “configuration” of M (to be formally defined below). The output is

simply the input preceded by t. In fact, one can show inductively that for any

input x, M gives output tx (again, notice that the first symbol . is omitted from

both the input and output; any blanks on the right end of the output are deleted,

but not blanks on the left of the output). Notice that if M ever has input p = q and

σ = t then will not halt because δ(p, σ) = δ(q,t) = (q,t,−); M “gets stuck” at

this step! However, we start (by convention) with a string of the form .x where x

contains no t’s and this input will never lead to execution of δ(q,t). This implies

that we could redefine the value of δ on (q,t) to be anything else, and the new

machine would always yield the same output (Papadimitriou says these to machines

are “precisely equivalent”). It is to be shown by induction in Exercise 2.8.2 that if

the input of M is x, then the output is y = tx.

Definition. A configuration of Turing machine M is a triple (q, w, u), where q ∈ K

is a state, and w, u are strings in Σ∗, where Σ∗ denotes all possible finite strings of

symbols.

Note. In configuration (q, w, u), q represents the current state, w is to be the string

to the left of the cursor (including the symbol at the current location of the cursor),

and u is the string to the right of the cursor (possibly empty). For example, the

16 steps in Example 2.1 can be expressed as the (where, like Papadimitriou, we



2.1. Turing Machine Basics 8

denote the empty set as ε = ∅):

Step i q δi(.x) Configuration

0 s .010 (s, ., 010)

1 s .010 (s, .0, 10)

2 s .010 (s, .01, 0)

3 s .010 (s, .010, ε)

4 s .010t (s, .010t, ε)

5 q .010t (q, .010,t)

6 q0 .01 t t (q, .01 t t, ε)

7 s .01t0 (s, .01t, 0)

8 q .01 t 0 (q, .01,t0)

9 q1 .0 t t0 (q1, .0 t t, 0)

10 s .0t10 (s, .0t, 10)

11 q .0 t 10 (q, .0,t10)

12 q0 . t t10 (q0, . t t, 10)

13 s .t010 (s, .t, 010)

14 q . t 010 (q, .,t010)

15 h .t010 (h, .t, 010)

Definition 2.2. Let M be a (fixed) Turing machine. Configuration (q, w, u) yields

in one step configuration (q′, w′, u′), denoted (q, w, u)
M→ (q′, w′, u′), if the following

holds. Let σ be the last symbol of w and let δ(q, σ) = (p, ρ, D). Then q′ = p holds.

(1) If D =→ then w′ is the string w but with its last symbol (which was σ) replaced



2.1. Turing Machine Basics 9

by ρ and the first symbol u added to the right hand end of (“appended to”)

w (or t appended to w if u = ε); u′ is u with the first symbol removed (or if

u = ε, then u′ = ε).

(2) If D =← then w′ is w with σ omitted from its right end, and u′ is u with ρ

attached to the left end.

(3) If D = − then w′ is w with the ending σ replaced by ρ, and u′ = u.

Configuration (q, w, u) yields in k steps configuration (q′, w′, u′), denoted (q, w, u)
Mk

→

(w′, q′, u′), where k ≥ 0 is an integer, if there are configurations (qi, wi, ui) for

i = 1, 2, . . . , k + 1, such that (qi, wi, ui)
M→ (qi+1, wi+1, ui+1) for i = 1, 2, . . . , k,

(q1, w1, u1) = (q, w, u), and (qk+1, wk+1, uk+1) = (q′, w′, u′). Configuration (q, w, u)

yields configuration (q′, w′, u′), denoted (q, w, i)
M∗
→ (q′, w′, u′) if there is an integer

k ≥ 0 such that (q, w, u)
MK

→ (q′, w′, u′).

Note. Informally, configuration (q, w, u) yields in one step configuration (q′, w′, u′),

if applying M (based on transition function δ) to configuration results in configu-

ration (q′, w′, u′). The idea of yielding in k steps is simply iteration of M (in terms

of δ) k times. In the notation of Definition 2.2, with M as the Turing machine of

Example 2.1 we have:

(s, ., 010)
M→ (s, .0, 10), (s, ., 010)

M15

→ (h, .t, 010), and so (s, .t, 010).

We now consider two more examples of Turing machines, one which finds a binary

successor of an input and one which determines whether an input is a palindrome

or not.



2.1. Turing Machine Basics 10

Example 2.2. Consider the Turing machine:

p ∈ K σ ∈ Σ δ(p, σ)

s 0 (s, 0,→)

s 1 (s, 1,→)

s t (q,t,←)

s . (s, .,→)

q 0 (h, 1,−)

q 1 (q, 0,←)

q . (h, .,→)

If the input is an integer n in binary form (possibly with leading 0’s), the output

is the binary representation of n+1. The third value of δ in the table above shows

that M starts by moving the cursor to the right. Then, the first two values of δ

show that M continues to move the cursor to the right until it reads t, at which

time the third value of δoverwrites the t with another t and moves the cursor

left (to what is the right-most bit of n). The 5th and 6th values of δ show that,

when moving to the left, the first time the cursor encounters a 0 it overwrites it

with a 1 and halts (since δ(q, 0) = (h, 1,−)); when it encounters a 1 it overwrites

it with a 0 and the cursor continues to move left (since δ(q, 1) = (q, 0,←)). These

steps correspond to adding 1 to n because, in binary, adding one to the right-most

bit, changing 0 to 1 OR changing 1 to 0 and “carrying the 1” to the next left

bit; this process is then iterated until the right-most 0 is encountered. The last

value of δ halts the machine when the cursor returns to . in its leftward movement,

after overwriting . with another . and then the cursor moves to the right (since

δ(q, .) = (h, .,→)). “There is a ‘bug’ in this machine,” as Papadimitriou sates on



2.1. Turing Machine Basics 11

page 23. In the event that the input is n = 2k−1 (in binary, a string of k 1’s), then

M will overwrite all of the 1’s, encounter ., and halt with an output of 0 (well, a

string of k 0’s). For example, if x = 111 then the machine will follow the steps:

(s, ., 111)
M→ (s, .1, 11)

M→ (s, .11, 1)
M→ (s, .111, ε)

M→

(q, .111,t)
M→ (q, .11, 0t)

M→ (q, .1, 00t)
M→ (q, ., 000t)

M→ (h, 0, 00t).

To address this error, the steps in the machine from Example 2.1 could be ran

first on input x (as a “subroutine,” as stated on page 23), where the value of

δ is modified to δ(q1, .) = (q2, .,→) and δ is defined on the new configuration

as δ(q2,t) = (h, 0,←) (the value of δ(p, σ) for p = q2 and other values of σ is

irrelevant, since when p = q2 we must have σ = t). If we add these steps to the

current machine, then we need to relabel the states to insure no ambiguity. Also,

we need to take redefine δ(q2,t) from (h, 0,←) to (p, 0,←) where p is the initial

state of the Turing machine given in this example. Debugged!

Example 2.3. We now describe a Turing machine that halts in a state of “yes” or

“no,” unlike the previous examples (though the first example from Cook’s Traveling

Salesman book could be modified to be of this form). Machine M tests a binary

string to see if it is a palindrome; that is, if it reads the same from left-to-right as

it reads from right-to-left. The cursor reads a symbol at the left end of the input

string, overwrites it with ., and enters a state which allows it to “remember” the

symbol read. It then moves the cursor to the right end of the string and checks if

it matches the first symbol; if it does not match then “no” is output, and it does

match then the right-most symbol is overwritten with t. The cursor then moves

back to the left end (now to the second symbol from the original string) and repeats



2.1. Turing Machine Basics 12

the process until the machine ends with “no” or completes the comparisons and

ends with “yes.” Notice that it alway reads the left of the string end and checks the

right end of the string. This could be made more efficient by reading the right end

symbol while the cursor is there and then comparing that to the left end symbol;

but the point is to demonstrate a Turing machine that solves the problem with no

regard for efficiency (but maybe a preference for simplicity).

p ∈ K σ ∈ Σ δ(p, σ)

s 0 (q0, .,→)

s 1 (q1, .,→)

s . (q,t,←)

s t (“yes”,t,−)

q0 0 (q0, 0,→)

q0 1 (q0, 1,→)

q0 t (q′0,t,←)

q1 0 (q1, 0,→)

q1 1 (q1, 1,→)

q1 t (q′1,t,←)

p ∈ K σ ∈ Σ δ(p, σ)

q′0 0 (q,t,←)

q′0 1 (“no”, 1,−)

q′0 . (“yes”,t,→)

q′1 0 (“no”, 1,−)

q′1 1 (q,t,←)

q′1 . (“yes”, .,→)

q 0 (q, 0,←)

q 1 (q, 1,←)

q . (s, .,→)

When the state is s, the cursor is reading “turning around” to move right (when

the symbol . is read), reading the left-most symbol (when that symbol is ‘0’, M

goes into state q0 and when that symbol is ‘1’, M goes into state q1; this is how it

“remembers” the symbol), or it is done (when the symbol is t). When the state

is q0, the last read left-most (non-.) font is 0 and the cursor advances to the right;

when the state is q1, the last read left-most symbol is 1 and the cursor advances

to the right. The cursor stops moving to the right when it reaches a t. It then



2.1. Turing Machine Basics 13

overwrites t with another t, replaces state qi with q′i (where i = 0, 1). The cursor

then reads the right-most (non-blank) symbol to see if it matches the subscript

of the state the machine is in. If not it outputs “no,” if so then the right-most

symbol is overwritten with t, the machine enters state q and this leads the cursor

to move back to the left until it reaches the left end (indicated by .). The process is

iterated. The machine halts when a symbol check fails (that is, when (p, σ) = (q′0, 1)

or (p, σ) = (q′1, 0)), or when there are no more symbols to read. There are no more

symbols to read when

(1) the cursor has moved left and . is next to t (when (p, σ) = (s,t)),

(2) the cursor has made the last successful comparison, overwritten the last symbol

‘0’ with t so that the cursor has moved to the left and reads . (when (p, σ) =

(q′0, .)), or

(3) the cursor has made the last successful comparison, overwritten the last symbol

‘1’ with t so that the cursor has moved to the left and reads . (when (p, σ) =

(q′1, .)).

To illustrate, consider the inputs 0010 and 101. These give the configurations:

(s, ., 0010)
M5

→ (q0, . . 010t, ε)
M→ (q′0, . . 010,t)

M→ (q, . . 01,tt)

M2

→ (q, .., 01 t t)
M→ (s, . . 0, 1 t t)

M→ (q0, . . ., 1 t t)

M2

→ (q0, . . .1t,t)
M→ (q′0, . . .1,tt)

M→ (“no”, . . .1,tt), and

(s, ., 101)
M→ (s, .1, 01)

M→ (q1, . . 0, 1)
M3

→ (q′1, . . 01,t)
M→ (q, . . 0,tt)

M→ (1, .., 0tt)
M→ (q0, ...,tt)

M→ (q0, ...t,t)
M→ (q′0, ...,tt)

M→ (“yes”, ...t,t).

Revised: 6/17/2022


