Graph Theory

Chapter 1. Ranking

1.2. Results—Proofs of Theorems

Graph Theory

April 24, 2021

April 24, 2021 4 / 11

Lemma 1.2.A (continued 1)

Proof (continued).

$$\det(P-I) = \det \begin{pmatrix} p_{11} - 1 & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} - 1 & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} - 1 \end{pmatrix}$$

$$= \det \begin{pmatrix} \sum_{i=1}^{n} p_{i1} - 1 & \sum_{i=1}^{n} p_{i2} - 1 & \cdots & \sum_{i=1}^{n} p_{in} - 1 \\ p_{21} & p_{22} - 1 & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} - 1 \end{pmatrix}$$
by adding Rows 2 through n to Row 1

Graph Theory

Lemma 1.2.A

Lemma 1.2.A. If P is an $n \times n$ stochastic matrix, then det(P-I) = 0where I is the $n \times n$ identity matrix.

Proof. Since $P = [p_{ii}]$ is a stochastic matrix, then the sum of the entries of each column is 1, $\sum_{i=1}^{n} p_{ii} = 1$ for each j = 1, 2, ..., n. Recall that the determinant is unaffected by row addition (see The Row-Addition Property of Theorem 4.2.A. Properties of the Determinant in my online Linear Algebra [MATH 2010] notes on 4.2. The Determinant of a Square Matrix). So we have

$$\det(P-I) = \det \left(\begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix} - \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \right)$$

Graph Theory

April 24, 2021 3 / 11

Lemma 1.2.A (continued 2)

Proof (continued).

$$\det(P-I) = \det \begin{pmatrix} \sum_{i=1}^{n} p_{i1} - 1 & \sum_{i=1}^{n} p_{i2} - 1 & \cdots & \sum_{i=1}^{n} p_{in} - 1 \\ p_{21} & p_{22} - 1 & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} - 1 \end{pmatrix}$$

$$= \det \begin{pmatrix} 0 & 0 & \cdots & 0 \\ p_{21} & p_{22} - 1 & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} - 1 \end{pmatrix}$$

$$\text{since } \sum_{i=1}^{n} p_{ij} = 1 \text{ for each } j$$

= 0 expanding the determinant along the first row.

So det(P - I) = 0, as claimed.

Graph Theory

Lemma 1.2.B

Lemma 1.2.B. For *P* is an $n \times n$ stochastic matrix, if (\mathcal{Z}) is feasible:

$$z \ge Pz, \ z \ge 0, \ e^T z \ge 1,$$
 (2)

then (\mathcal{X}) is feasible:

$$x = Px, \ x \ge 0, \ e^{T}x = 1. \tag{X}$$

Proof. Suppose (\mathcal{Z}) is feasible and let $z \in \mathbb{R}^n$ satisfy (\mathcal{Z}) . Consider $x = \frac{z}{e^T z}$. We then have by the linearity of matrix multiplication that

$$x - Px = \frac{z}{e^T z} - P\left(\frac{z}{e^T z}\right) = \frac{z}{e^T z} - \frac{Pz}{e^T z} = \frac{1}{e^T z}(z - Pz) \ge 0$$

where the last inequality holds because $z \ge Pz$ and so $z - Pz \ge 0$. So the components of x - Px are nonnegative and since the row vector $e^T P \in \mathbb{R}^n$ has as its jth component the sum of the entries in the jth column of P (which is 1), so $e^T P = e^T$.

Graph Theory

Theorem 1.2.A

Theorem 1.2.A. The Weak Duality Theorem.

If $u \in \mathbb{R}^k$ is feasible for (\mathcal{P}) and $v \in \mathbb{R}^m$ is feasible for (\mathcal{D}) , then we have $\min_{u \in \mathbb{R}^k} \{ c^T u \mid Au \ge b, \ u \ge 0 \} \ge \max_{v \in \mathbb{R}^m} \{ b^T v \mid A^T v \le c, \ v \ge 0 \}.$

Proof. For $u \in \mathbb{R}^k$ feasible for (\mathcal{P}) and $v \in \mathbb{R}^m$ feasible for (\mathcal{D}) , we have

$$c^T u \ge (A^T v)^T u$$
 since $c \ge A^T v$ by (\mathcal{D})
= $(v^T A) u = v^T (A^T)^T u = v^T (A u)$ by properties of transpose

(v'A)u = v'(A')'u = v'(Au) by properties of transpose and associativity

 $\geq v^T b$ since $b \geq Au$ by (\mathcal{P})

= $b^T v$ since $v^T b = b^T v$ is a constant (a dot product).

This inequality implies

$$\min_{u \in \mathbb{R}^k} \{ \boldsymbol{c}^T \boldsymbol{u} \mid A\boldsymbol{u} \geq \boldsymbol{b}, \ \boldsymbol{u} \geq \boldsymbol{0} \} \geq \max_{\boldsymbol{v} \in \mathbb{R}^m} \{ \boldsymbol{b}^T \boldsymbol{v} \mid A^T \boldsymbol{v} \leq \boldsymbol{c}, \ \boldsymbol{v} \geq \boldsymbol{0} \},$$

as claimed.

Graph Theory April 24, 2021 8 /

Lemma 1.2.B (continued)

Proof (continued). So by associativity,

$$e^{T}(x - Px) = e^{T}x - e^{T}(Px) = e^{T}x - (e^{T}P)x = e^{T}x - e^{T}x = 0,$$

and hence the sum of the entries of nonnegative vector x - Px is 0. That is x - Px = 0 and x = Px, so that the first condition of (\mathcal{X}) is satisfied. Next.

$$x = \frac{z}{e^T z} \ge 0$$
 since $z \ge 0$, and $e^T x = e^T \left(\frac{z}{e^T z} \right) = \frac{e^T z}{e^T z} = 1$.

Hence, the other two conditions of (\mathcal{X}) are satisfied and so (\mathcal{X}) is also feasible as claimed, where we have $x = \frac{z}{e^T z}$.

Graph Theory April 24, 2021 7 / 11

Theorem 1.2.

Theorem 1.2.C

Theorem 1.2.C. For stochastic matrix P, the system

$$x = Px, \ x \ge 0, \ e^T x = 1. \tag{X}$$

is feasible. That is, there exists $x \in \mathbb{R}^n$ satisfying the conditions of (\mathcal{X}) .

Proof. First, we claim that $\overline{y} = e$ and $\overline{y}_{n+1} = 0$ give a solution to $(\mathcal{D}_{\mathcal{Z}})$. We have

$$\max_{y \in \mathbb{R}^{n}, \ y_{n+1} \in \mathbb{R}} \left\{ y_{n+1} \mid y \leq P^{T} y - y_{n+1} e, \ y \geq 0, \ y_{n+1} \geq 0 \right\}, \qquad (\mathcal{D}_{\mathcal{Z}})$$

and notice that $e = \overline{y} \le P^T \overline{y} - \overline{y}_{n+1} e = P^T e - 0e = P^T e = e$ since P is a stochastic matrix and hence the sum of the entries of each column of P is 1 (and therefore the sum of the entries of each row of P^T is 1). Next we need to show the maximum of the admissible y_{n+1} 's does not exceed $\overline{y}_{n+1} = 0$.

Theorem 1.2.C (continued 1)

Proof (continued). Since $y \leq P^T y - y_{n+1} e$ then the maximum component of $y \in \mathbb{R}^n$ is less than or equal to the maximum component of $P^T y - y_{n+1} e \in \mathbb{R}^n$. Next, the maximum component of $P^T y$ is less than or equal to the maximum component of $P^T e$ (which is just the maximum row sum of P^T , which is 1 as described above) times the maximum component of y. We therefore have (using subscripts to indicate components of vectors):

$$\max_{1 \le i \le n} \{ y_i \} \le \max_{1 \le i \le n} (P^T y - y_{n+1} e) = \max_{1 \le i \le n} (P^T y)_i - y_{n+1}$$

$$\le \max_{1 \le i \le n} (P^T e)_i \max_{1 \le i \le n} y_i - y_{n+1} = \max_{1 \le i \le n} y_i - y_{n+1}$$

where the last equality holds because $\max_{1 \leq i \leq n} (P^T e)_i = 1$ as described above. Hence $y_{n+1} \leq \max_{1 \leq i \leq n} y_i - \max_{1 \leq i \leq n} y_i = 0 = \overline{y}_{n+1}$. Therefore $\overline{y} = e$ and $\overline{y}_{n+1} = 0$ is a solution to $(\mathcal{D}_{\mathcal{Z}})$.

Theorem 1.2.C (continued 2)

Theorem 1.2.C. For stochastic matrix P, the system

$$x = Px, \ x \ge 0, \ e^T x = 1. \tag{X}$$

is feasible. That is, there exists $x \in \mathbb{R}^n$ satisfying the conditions of (\mathcal{X}) .

Proof (continued). So the dual problem $(\mathcal{D}_{\mathcal{Z}})$ is solvable. Hence, by the Strong Duality Theorem (Theorem 1.2.B), the primal problem $(\mathcal{P}_{\mathcal{Z}})$ is solvable. So by Note 1.2.C, this implies the feasibility of (\mathcal{Z}) . Then by the Lemma 1.2.B, we have the feasibility of (\mathcal{X}) , as claimed.

 Graph Theory
 April 24, 2021
 10 / 11
 ()
 Graph Theory
 April 24, 2021
 11 / 11