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Lemma 1.2.A

Lemma 1.2.A

Lemma 1.2.A. If P is an n × n stochastic matrix, then det(P − I ) = 0
where I is the n × n identity matrix.

Proof. Since P = [pij ] is a stochastic matrix, then the sum of the entries
of each column is 1,

∑n
i=1 pij = 1 for each j = 1, 2, . . . , n. Recall that the

determinant is unaffected by row addition (see The Row-Addition Property
of Theorem 4.2.A. Properties of the Determinant in my online Linear
Algebra [MATH 2010] notes on 4.2. The Determinant of a Square Matrix).

So we have

det(P − I ) = det




p11 p12 · · · p1n

p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

−


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



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Lemma 1.2.A

Lemma 1.2.A (continued 1)

Proof (continued).

det(P − I ) = det


p11 − 1 p12 · · · p1n

p21 p22 − 1 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn − 1



= det


∑n

i=1 pi1 − 1
∑n

i=1 pi2 − 1 · · ·
∑n

i=1 pin − 1
p21 p22 − 1 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn − 1


by adding Rows 2 through n to Row 1

() Graph Theory April 24, 2021 4 / 11



Lemma 1.2.A

Lemma 1.2.A (continued 2)

Proof (continued).

det(P − I ) = det


∑n

i=1 pi1 − 1
∑n

i=1 pi2 − 1 · · ·
∑n

i=1 pin − 1
p21 p22 − 1 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn − 1



= det


0 0 · · · 0

p21 p22 − 1 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn − 1


since

∑n
i=1 pij = 1 for each j

= 0 expanding the determinant along the first row.

So det(P − I ) = 0, as claimed.
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Lemma 1.2.B

Lemma 1.2.B

Lemma 1.2.B. For P is an n × n stochastic matrix, if (Z) is feasible:

z ≥ Pz , z ≥ 0, eT z ≥ 1, (Z)

then (X ) is feasible:

x = Px , x ≥ 0, eT x = 1. (X )

Proof. Suppose (Z) is feasible and let z ∈ Rn satisfy (Z). Consider

x =
z

eT z
. We then have by the linearity of matrix multiplication that

x − Px =
z

eT z
− P

( z

eT z

)
=

z

eT z
− Pz

eT z
=

1

eT z
(z − Pz) ≥ 0

where the last inequality holds because z ≥ Pz and so z − Pz ≥ 0.

So the
components of x −Px are nonnegative and since the row vector eTP ∈ Rn

has as its jth component the sum of the entries in the jth column of P
(which is 1), so eTP = eT .
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Lemma 1.2.B

Lemma 1.2.B (continued)

Proof (continued). So by associativity,

eT (x − Px) = eT x − eT (Px) = eT x − (eTP)x = eT x − eT x = 0,

and hence the sum of the entries of nonnegative vector x − Px is 0. That
is x − Px = 0 and x = Px , so that the first condition of (X ) is satisfied.
Next,

x =
z

eT z
≥ 0 since z ≥ 0, and eT x = eT

( z

eT z

)
=

eT z

eT z
= 1.

Hence, the other two conditions of (X ) are satisfied and so (X ) is also

feasible as claimed, where we have x =
z

eT z
.
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Theorem 1.2.A. The Weak Duality Theorem.

Theorem 1.2.A

Theorem 1.2.A. The Weak Duality Theorem.
If u ∈ Rk is feasible for (P) and v ∈ Rm is feasible for (D), then we have

min
u∈Rk

{cTu | Au ≥ b, u ≥ 0} ≥ max
v∈Rm

{bT v | AT v ≤ c , v ≥ 0}.

Proof. For u ∈ Rk feasible for (P) and v ∈ Rm feasible for (D), we have

cTu ≥ (AT v)Tu since c ≥ AT v by (D)

= (vTA)u = vT (AT )Tu = vT (Au) by properties of transpose

and associativity

≥ vTb since b ≥ Au by (P)

= bT v since vTb = bT v is a constant (a dot product).

This inequality implies

min
u∈Rk

{cTu | Au ≥ b, u ≥ 0} ≥ max
v∈Rm

{bT v | AT v ≤ c , v ≥ 0},

as claimed.

() Graph Theory April 24, 2021 8 / 11



Theorem 1.2.A. The Weak Duality Theorem.

Theorem 1.2.A

Theorem 1.2.A. The Weak Duality Theorem.
If u ∈ Rk is feasible for (P) and v ∈ Rm is feasible for (D), then we have

min
u∈Rk

{cTu | Au ≥ b, u ≥ 0} ≥ max
v∈Rm

{bT v | AT v ≤ c , v ≥ 0}.

Proof. For u ∈ Rk feasible for (P) and v ∈ Rm feasible for (D), we have

cTu ≥ (AT v)Tu since c ≥ AT v by (D)

= (vTA)u = vT (AT )Tu = vT (Au) by properties of transpose

and associativity

≥ vTb since b ≥ Au by (P)

= bT v since vTb = bT v is a constant (a dot product).

This inequality implies

min
u∈Rk

{cTu | Au ≥ b, u ≥ 0} ≥ max
v∈Rm

{bT v | AT v ≤ c , v ≥ 0},

as claimed.
() Graph Theory April 24, 2021 8 / 11



Theorem 1.2.A. The Weak Duality Theorem.

Theorem 1.2.A

Theorem 1.2.A. The Weak Duality Theorem.
If u ∈ Rk is feasible for (P) and v ∈ Rm is feasible for (D), then we have

min
u∈Rk

{cTu | Au ≥ b, u ≥ 0} ≥ max
v∈Rm

{bT v | AT v ≤ c , v ≥ 0}.

Proof. For u ∈ Rk feasible for (P) and v ∈ Rm feasible for (D), we have

cTu ≥ (AT v)Tu since c ≥ AT v by (D)

= (vTA)u = vT (AT )Tu = vT (Au) by properties of transpose

and associativity

≥ vTb since b ≥ Au by (P)

= bT v since vTb = bT v is a constant (a dot product).

This inequality implies

min
u∈Rk

{cTu | Au ≥ b, u ≥ 0} ≥ max
v∈Rm

{bT v | AT v ≤ c , v ≥ 0},

as claimed.
() Graph Theory April 24, 2021 8 / 11



Theorem 1.2.C

Theorem 1.2.C

Theorem 1.2.C. For stochastic matrix P, the system

x = Px , x ≥ 0, eT x = 1. (X )

is feasible. That is, there exists x ∈ Rn satisfying the conditions of (X ).

Proof. First, we claim that y = e and yn+1 = 0 give a solution to (DZ).
We have

max
y∈Rn, yn+1∈R

{
yn+1 | y ≤ PT y − yn+1e, y ≥ 0, yn+1 ≥ 0

}
, (DZ)

and notice that e = y ≤ PT y − yn+1e = PT e − 0e = PT e = e since P is
a stochastic matrix and hence the sum of the entries of each column of P
is 1 (and therefore the sum of the entries of each row of PT is 1). Next
we need to show the maximum of the admissible yn+1’s does not exceed
yn+1 = 0.
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Theorem 1.2.C

Theorem 1.2.C (continued 1)

Proof (continued). Since y ≤ PT y − yn+1e then the maximum
component of y ∈ Rn is less than or equal to the maximum component of
PT y − yn+1e ∈ Rn. Next, the maximum component of PT y is less than
or equal to the maximum component of PT e (which is just the maximum
row sum of PT , which is 1 as described above) times the maximum
component of y . We therefore have (using subscripts to indicate
components of vectors):

max
1≤i≤n

{yi} ≤ max
1≤i≤n

(PT y − yn+1e) = max
1≤i≤n

(PT y)i − yn+1

≤ max
1≤i≤n

(PT e)i max
1≤i≤n

yi − yn+1 = max
1≤i≤n

yi − yn+1

where the last equality holds because max1≤i≤n(P
T e)i = 1 as described

above. Hence yn+1 ≤ max1≤i≤n yi −max1≤i≤n yi = 0 = yn+1. Therefore
y = e and yn+1 = 0 is a solution to (DZ).

() Graph Theory April 24, 2021 10 / 11



Theorem 1.2.C

Theorem 1.2.C (continued 1)

Proof (continued). Since y ≤ PT y − yn+1e then the maximum
component of y ∈ Rn is less than or equal to the maximum component of
PT y − yn+1e ∈ Rn. Next, the maximum component of PT y is less than
or equal to the maximum component of PT e (which is just the maximum
row sum of PT , which is 1 as described above) times the maximum
component of y . We therefore have (using subscripts to indicate
components of vectors):

max
1≤i≤n

{yi} ≤ max
1≤i≤n

(PT y − yn+1e) = max
1≤i≤n

(PT y)i − yn+1

≤ max
1≤i≤n

(PT e)i max
1≤i≤n

yi − yn+1 = max
1≤i≤n

yi − yn+1

where the last equality holds because max1≤i≤n(P
T e)i = 1 as described

above. Hence yn+1 ≤ max1≤i≤n yi −max1≤i≤n yi = 0 = yn+1. Therefore
y = e and yn+1 = 0 is a solution to (DZ).

() Graph Theory April 24, 2021 10 / 11



Theorem 1.2.C

Theorem 1.2.C (continued 2)

Theorem 1.2.C. For stochastic matrix P, the system

x = Px , x ≥ 0, eT x = 1. (X )

is feasible. That is, there exists x ∈ Rn satisfying the conditions of (X ).

Proof (continued). So the dual problem (DZ) is solvable. Hence, by the
Strong Duality Theorem (Theorem 1.2.B), the primal problem (PZ) is
solvable. So by Note 1.2.C, this implies the feasibility of (Z). Then by the
Lemma 1.2.B, we have the feasibility of (X ), as claimed.
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