Graph Theory

Chapter 1. Ranking 1.2. Results—Proofs of Theorems

3 [Theorem 1.2.A. The Weak Duality Theorem.](#page-12-0)

[Theorem 1.2.C](#page-15-0)

Lemma 1.2.A

Lemma 1.2.A. If P is an $n \times n$ stochastic matrix, then $det(P - I) = 0$ where *I* is the $n \times n$ identity matrix.

Proof. Since $P = [p_{ij}]$ is a stochastic matrix, then the sum of the entries of each column is 1, $\sum_{i=1}^n p_{ij} = 1$ for each $j = 1, 2, \ldots, n$. Recall that the determinant is unaffected by row addition (see The Row-Addition Property of Theorem 4.2.A. Properties of the Determinant in my online Linear Algebra [MATH 2010] notes on [4.2. The Determinant of a Square Matrix\)](https://faculty.etsu.edu/gardnerr/2010/c4s2.pdf).

Lemma 1.2.A

Lemma 1.2.A. If P is an $n \times n$ stochastic matrix, then $det(P - I) = 0$ where *I* is the $n \times n$ identity matrix.

Proof. Since $P = [p_{ii}]$ is a stochastic matrix, then the sum of the entries of each column is $1, \, \sum_{i=1}^n p_{ij} = 1$ for each $j = 1, 2, \ldots, n.$ Recall that the determinant is unaffected by row addition (see The Row-Addition Property of Theorem 4.2.A. Properties of the Determinant in my online Linear Algebra [MATH 2010] notes on [4.2. The Determinant of a Square Matrix\)](https://faculty.etsu.edu/gardnerr/2010/c4s2.pdf). So we have

$$
\det(P - I) = \det \left(\left(\begin{array}{cccc} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{array} \right) - \left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right) \right)
$$

Lemma 1.2.A

Lemma 1.2.A. If P is an $n \times n$ stochastic matrix, then $det(P - I) = 0$ where *I* is the $n \times n$ identity matrix.

Proof. Since $P = [p_{ii}]$ is a stochastic matrix, then the sum of the entries of each column is $1, \, \sum_{i=1}^n p_{ij} = 1$ for each $j = 1, 2, \ldots, n.$ Recall that the determinant is unaffected by row addition (see The Row-Addition Property of Theorem 4.2.A. Properties of the Determinant in my online Linear Algebra [MATH 2010] notes on [4.2. The Determinant of a Square Matrix\)](https://faculty.etsu.edu/gardnerr/2010/c4s2.pdf). So we have

$$
\det(P-I) = \det \left(\left(\begin{array}{cccc} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{array} \right) - \left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right) \right)
$$

Lemma 1.2.A (continued 1)

Proof (continued).

$$
\det(P - I) = \det \begin{pmatrix} p_{11} - 1 & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} - 1 & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} - 1 \end{pmatrix}
$$

=
$$
\det \begin{pmatrix} \sum_{i=1}^{n} p_{i1} - 1 & \sum_{i=1}^{n} p_{i2} - 1 & \cdots & \sum_{i=1}^{n} p_{in} - 1 \\ p_{21} & p_{22} - 1 & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} - 1 \end{pmatrix}
$$

by adding Rows 2 through *n* to Row 1

Lemma 1.2.A (continued 2)

Proof (continued).

$$
\det(P - I) = \det \begin{pmatrix} \sum_{i=1}^{n} p_{i1} - 1 & \sum_{i=1}^{n} p_{i2} - 1 & \cdots & \sum_{i=1}^{n} p_{in} - 1 \\ p_{21} & p_{22} - 1 & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} - 1 \end{pmatrix}
$$

=
$$
\det \begin{pmatrix} 0 & 0 & \cdots & 0 \\ p_{21} & p_{22} - 1 & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} - 1 \end{pmatrix}
$$

since $\sum_{i=1}^{n} p_{ij} = 1$ for each j
= 0 expanding the determinant along the first row.

So det($P - I$) = 0, as claimed.

Lemma 1.2 B

Lemma 1.2.B. For P is an $n \times n$ stochastic matrix, if (Z) is feasible:

$$
z \geq Pz, \ z \geq 0, \ e^T z \geq 1, \tag{2}
$$

then (X) is feasible:

$$
x = Px, \ x \ge 0, \ e^T x = 1. \tag{3}
$$

Proof. Suppose (\mathcal{Z}) is feasible and let $z \in \mathbb{R}^n$ satisfy (\mathcal{Z}) . Consider $x=\frac{z}{\overline{z}}$ $\frac{2}{e^{T}z}$. We then have by the linearity of matrix multiplication that

$$
x - Px = \frac{z}{e^T z} - P\left(\frac{z}{e^T z}\right) = \frac{z}{e^T z} - \frac{Pz}{e^T z} = \frac{1}{e^T z} (z - Pz) \ge 0
$$

where the last inequality holds because $z \geq Pz$ and so $z - Pz \geq 0$.

Lemma 1.2 B

Lemma 1.2.B. For P is an $n \times n$ stochastic matrix, if (\mathcal{Z}) is feasible:

$$
z \geq Pz, \ z \geq 0, \ e^T z \geq 1, \tag{2}
$$

then (X) is feasible:

$$
x = Px, \ x \ge 0, \ e^T x = 1. \tag{3}
$$

Proof. Suppose (\mathcal{Z}) is feasible and let $z \in \mathbb{R}^n$ satisfy (\mathcal{Z}) . Consider $x=\frac{z}{\overline{t}}$ $\frac{2}{e^{T}z}$. We then have by the linearity of matrix multiplication that

$$
x - Px = \frac{z}{e^T z} - P\left(\frac{z}{e^T z}\right) = \frac{z}{e^T z} - \frac{Pz}{e^T z} = \frac{1}{e^T z} (z - Pz) \ge 0
$$

where the last inequality holds because $z \geq Pz$ and so $z - Pz \geq 0$. So the components of $x-Px$ are nonnegative and since the row vector $e^{\mathcal{T}}P\in\mathbb{R}^n$ has as its *i*th component the sum of the entries in the *j*th column of P (which is 1), so $e^T P = e^T$.

Lemma 1.2.B

Lemma 1.2.B. For P is an $n \times n$ stochastic matrix, if (\mathcal{Z}) is feasible:

$$
z \geq Pz, \ z \geq 0, \ e^T z \geq 1, \tag{2}
$$

then (X) is feasible:

$$
x = Px, \ x \ge 0, \ e^T x = 1. \tag{3}
$$

Proof. Suppose (\mathcal{Z}) is feasible and let $z \in \mathbb{R}^n$ satisfy (\mathcal{Z}) . Consider $x=\frac{z}{\overline{t}}$ $\frac{2}{e^{T}z}$. We then have by the linearity of matrix multiplication that

$$
x - Px = \frac{z}{e^T z} - P\left(\frac{z}{e^T z}\right) = \frac{z}{e^T z} - \frac{Pz}{e^T z} = \frac{1}{e^T z} (z - Pz) \ge 0
$$

where the last inequality holds because $z \geq Pz$ and so $z - Pz > 0$. So the components of $x-Px$ are nonnegative and since the row vector $e^{\mathcal T} P \in \mathbb R^n$ has as its *i*th component the sum of the entries in the *i*th column of P (which is 1), so $e^T P = e^T$.

Lemma 1.2.B (continued)

Proof (continued). So by associativity,

$$
e^T(x - Px) = e^Tx - e^T(Px) = e^Tx - (e^TP)x = e^Tx - e^Tx = 0,
$$

and hence the sum of the entries of nonnegative vector $x - Px$ is 0. That is $x - Px = 0$ and $x = Px$, so that the first condition of (\mathcal{X}) is satisfied. Next,

$$
x = \frac{z}{e^T z} \ge 0 \text{ since } z \ge 0, \text{ and } e^T x = e^T \left(\frac{z}{e^T z}\right) = \frac{e^T z}{e^T z} = 1.
$$

Hence, the other two conditions of (X) are satisfied and so (X) is also feasible as claimed, where we have $x = \frac{z}{x}$ $\frac{1}{e^T z}$.

Lemma 1.2.B (continued)

Proof (continued). So by associativity,

$$
e^T(x - Px) = e^Tx - e^T(Px) = e^Tx - (e^TP)x = e^Tx - e^Tx = 0,
$$

and hence the sum of the entries of nonnegative vector $x - Px$ is 0. That is $x - Px = 0$ and $x = Px$, so that the first condition of (X) is satisfied. Next,

$$
x = \frac{z}{e^T z} \ge 0
$$
 since $z \ge 0$, and $e^T x = e^T \left(\frac{z}{e^T z}\right) = \frac{e^T z}{e^T z} = 1$.

Hence, the other two conditions of (\mathcal{X}) are satisfied and so (\mathcal{X}) is also feasible as claimed, where we have $x = \frac{z}{x}$ $\frac{2}{e^{T}z}$.

Theorem 1.2.A

Theorem 1.2.A. The Weak Duality Theorem. If $u \in \mathbb{R}^k$ is feasible for (\mathcal{P}) and $v \in \mathbb{R}^m$ is feasible for $(\mathcal{D}),$ then we have $min_{u \in \mathbb{R}^k} \{ c^T u \mid Au \ge b, u \ge 0 \} \ge max_{v \in \mathbb{R}^m} \{ b^T v \mid A^T v \le c, v \ge 0 \}.$

Proof. For $u \in \mathbb{R}^k$ feasible for (\mathcal{P}) and $v \in \mathbb{R}^m$ feasible for (\mathcal{D}) , we have

$$
c^{T} u \ge (A^{T} v)^{T} u
$$
 since $c \ge A^{T} v$ by (D)
= $(v^{T} A) u = v^{T} (A^{T})^{T} u = v^{T} (Au)$ by properties of transpose
and associativity

$$
\geq v^T b \text{ since } b \geq Au \text{ by } (\mathcal{P})
$$

 $b^T v$ since $v^T b = b^T v$ is a constant (a dot product).

Theorem 1.2 A

Theorem 1.2.A. The Weak Duality Theorem. If $u \in \mathbb{R}^k$ is feasible for (\mathcal{P}) and $v \in \mathbb{R}^m$ is feasible for $(\mathcal{D}),$ then we have $min_{u \in \mathbb{R}^k} \{ c^T u \mid Au \ge b, u \ge 0 \} \ge max_{v \in \mathbb{R}^m} \{ b^T v \mid A^T v \le c, v \ge 0 \}.$

Proof. For $u \in \mathbb{R}^k$ feasible for (\mathcal{P}) and $v \in \mathbb{R}^m$ feasible for (\mathcal{D}) , we have

$$
c^T u \ge (A^T v)^T u \text{ since } c \ge A^T v \text{ by } (\mathcal{D})
$$

= $(v^T A)u = v^T (A^T)^T u = v^T (Au)$ by properties of transpose
and associativity
 $\ge v^T b \text{ since } b \ge Au \text{ by } (\mathcal{P})$
= $b^T v \text{ since } v^T b = b^T v \text{ is a constant (a dot product).}$

This inequality implies

$$
\min_{u\in\mathbb{R}^k}\left\{c^T u \mid Au \ge b, u \ge 0\right\} \ge \max_{v\in\mathbb{R}^m}\left\{b^T v \mid A^T v \le c, v \ge 0\right\},\
$$

as claimed.

Theorem 1.2 A

Theorem 1.2.A. The Weak Duality Theorem. If $u \in \mathbb{R}^k$ is feasible for (\mathcal{P}) and $v \in \mathbb{R}^m$ is feasible for $(\mathcal{D}),$ then we have $min_{u \in \mathbb{R}^k} \{ c^T u \mid Au \ge b, u \ge 0 \} \ge max_{v \in \mathbb{R}^m} \{ b^T v \mid A^T v \le c, v \ge 0 \}.$

Proof. For $u \in \mathbb{R}^k$ feasible for (\mathcal{P}) and $v \in \mathbb{R}^m$ feasible for (\mathcal{D}) , we have

$$
c^T u \ge (A^T v)^T u \text{ since } c \ge A^T v \text{ by } (\mathcal{D})
$$

= $(v^T A)u = v^T (A^T)^T u = v^T (Au)$ by properties of transpose
and associativity
 $\ge v^T b \text{ since } b \ge Au \text{ by } (\mathcal{P})$
= $b^T v \text{ since } v^T b = b^T v \text{ is a constant (a dot product).}$

This inequality implies

$$
\min_{u\in\mathbb{R}^k}\left\{c^{\mathsf{T}} u \mid Au \geq b, u\geq 0\right\} \geq \max_{v\in\mathbb{R}^m}\left\{b^{\mathsf{T}} v \mid A^{\mathsf{T}} v\leq c, v\geq 0\right\},\
$$

as claimed.

Theorem 1.2.C

Theorem 1.2.C. For stochastic matrix P , the system

$$
x = Px, \ x \ge 0, \ e^T x = 1. \tag{3}
$$

is feasible. That is, there exists $x\in\mathbb{R}^n$ satisfying the conditions of $(\mathcal{X}).$

Proof. First, we claim that $\overline{y} = e$ and $\overline{y}_{n+1} = 0$ give a solution to $(\mathcal{D}_{\mathcal{Z}})$. We have

$$
\max_{y\in\mathbb{R}^n,\ y_{n+1}\in\mathbb{R}}\left\{y_{n+1} \mid y\leq P^{\mathsf{T}}y-y_{n+1}e,\ y\geq 0,\ y_{n+1}\geq 0\right\},\qquad\left(\mathcal{D}_{\mathcal{Z}}\right)
$$

and notice that $e = \overline{y} \leq P^{\,T}\overline{y} - \overline{y}_{n+1}e = P^{\,T}e - 0e = P^{\,T}e = e$ since P is a stochastic matrix and hence the sum of the entries of each column of P is 1 (and therefore the sum of the entries of each row of $P^{\mathcal{T}}$ is 1). Next we need to show the maximum of the admissible y_{n+1} 's does not exceed $\overline{y}_{n+1} = 0.$

Theorem 1.2.C

Theorem 1.2.C. For stochastic matrix P , the system

$$
x = Px, \ x \ge 0, \ e^T x = 1. \tag{3}
$$

is feasible. That is, there exists $x\in\mathbb{R}^n$ satisfying the conditions of $(\mathcal{X}).$

Proof. First, we claim that $\overline{y} = e$ and $\overline{y}_{n+1} = 0$ give a solution to $(\mathcal{D}_{\mathcal{Z}})$. We have

$$
\max_{y\in\mathbb{R}^n,\ y_{n+1}\in\mathbb{R}}\left\{y_{n+1}\mid y\leq P^{\mathsf{T}}y-y_{n+1}e,\ y\geq 0,\ y_{n+1}\geq 0\right\},\qquad\left(\mathcal{D}_{\mathcal{Z}}\right)
$$

and notice that $e = \overline{y} \leq P^{\, \mathcal{T}} \overline{y} - \overline{y}_{n+1} e = P^{\, \mathcal{T}} e - 0 e = P^{\, \mathcal{T}} e = e$ since P is a stochastic matrix and hence the sum of the entries of each column of P is 1 (and therefore the sum of the entries of each row of $P^{\mathcal{T}}$ is 1). Next we need to show the maximum of the admissible y_{n+1} 's does not exceed $\overline{y}_{n+1} = 0.$

Theorem 1.2.C (continued 1)

Proof (continued). Since $y \le P^Ty - y_{n+1}e$ then the maximum component of $y\in\mathbb{R}^n$ is less than or equal to the maximum component of $P^{\mathcal{T}} y - y_{n+1} e \in \mathbb{R}^n$. Next, the maximum component of $P^{\mathcal{T}} y$ is less than or equal to the maximum component of $P^{\mathcal{T}}$ e (which is just the maximum row sum of $P^{\mathcal{T}}$, which is 1 as described above) times the maximum component of y. We therefore have (using subscripts to indicate components of vectors):

$$
\max_{1 \le i \le n} \{y_i\} \le \max_{1 \le i \le n} (P^T y - y_{n+1} e) = \max_{1 \le i \le n} (P^T y)_i - y_{n+1}
$$

$$
\leq \max_{1 \leq i \leq n} (P^T e)_{i} \max_{1 \leq i \leq n} y_i - y_{n+1} = \max_{1 \leq i \leq n} y_i - y_{n+1}
$$

where the last equality holds because max $_{1\leq i\leq n}(P^{\mathcal{T}}e)_i=1$ as described above. Hence $y_{n+1} \leq \max_{1 \leq i \leq n} y_i - \max_{1 \leq i \leq n} y_i = 0 = \overline{y}_{n+1}$. Therefore \overline{y} = e and \overline{y}_{n+1} = 0 is a solution to $(\mathcal{D}_{\mathcal{Z}})$.

Theorem 1.2.C (continued 1)

Proof (continued). Since $y \le P^Ty - y_{n+1}e$ then the maximum component of $y\in\mathbb{R}^n$ is less than or equal to the maximum component of $P^{\mathcal{T}} y - y_{n+1} e \in \mathbb{R}^n$. Next, the maximum component of $P^{\mathcal{T}} y$ is less than or equal to the maximum component of $P^{\mathcal{T}}$ e (which is just the maximum row sum of $P^{\mathcal{T}}$, which is 1 as described above) times the maximum component of y. We therefore have (using subscripts to indicate components of vectors):

$$
\max_{1 \le i \le n} \{y_i\} \le \max_{1 \le i \le n} (P^T y - y_{n+1} e) = \max_{1 \le i \le n} (P^T y)_i - y_{n+1}
$$

$$
\leq \max_{1 \leq i \leq n} (P^T e)_i \max_{1 \leq i \leq n} y_i - y_{n+1} = \max_{1 \leq i \leq n} y_i - y_{n+1}
$$

where the last equality holds because max $_{1\leq i\leq n}(P^{{\mathcal{T}}}e)_i=1$ as described above. Hence $y_{n+1} \leq \max_{1 \leq i \leq n} y_i - \max_{1 \leq i \leq n} y_i = 0 = \overline{y}_{n+1}$. Therefore $\overline{y} = e$ and $\overline{y}_{n+1} = 0$ is a solution to $(\mathcal{D}_{\mathcal{Z}})$.

Theorem 1.2.C (continued 2)

Theorem 1.2.C. For stochastic matrix P , the system

$$
x = Px, \ x \ge 0, \ e^T x = 1. \tag{3}
$$

is feasible. That is, there exists $x\in\mathbb{R}^n$ satisfying the conditions of $(\mathcal{X}).$

Proof (continued). So the dual problem (\mathcal{D}_z) is solvable. Hence, by the Strong Duality Theorem (Theorem 1.2.B), the primal problem (\mathcal{P}_z) is solvable. So by Note 1.2.C, this implies the feasibility of (\mathcal{Z}) . Then by the Lemma 1.2.B, we have the feasibility of (X) , as claimed.