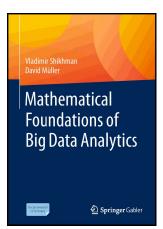
Graph Theory

Chapter 1. Ranking 1.2. Results—Proofs of Theorems



3 Theorem 1.2.A. The Weak Duality Theorem.

Theorem 1.2.C

Lemma 1.2.A

Lemma 1.2.A. If *P* is an $n \times n$ stochastic matrix, then det(P - I) = 0 where *I* is the $n \times n$ identity matrix.

Proof. Since $P = [p_{ij}]$ is a stochastic matrix, then the sum of the entries of each column is 1, $\sum_{i=1}^{n} p_{ij} = 1$ for each j = 1, 2, ..., n. Recall that the determinant is unaffected by row addition (see The Row-Addition Property of Theorem 4.2.A. Properties of the Determinant in my online Linear Algebra [MATH 2010] notes on 4.2. The Determinant of a Square Matrix).

Lemma 1.2.A

Lemma 1.2.A. If *P* is an $n \times n$ stochastic matrix, then det(P - I) = 0 where *I* is the $n \times n$ identity matrix.

Proof. Since $P = [p_{ij}]$ is a stochastic matrix, then the sum of the entries of each column is 1, $\sum_{i=1}^{n} p_{ij} = 1$ for each j = 1, 2, ..., n. Recall that the determinant is unaffected by row addition (see The Row-Addition Property of Theorem 4.2.A. Properties of the Determinant in my online Linear Algebra [MATH 2010] notes on 4.2. The Determinant of a Square Matrix). So we have

$$\det(P-I) = \det\left(\begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix} - \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}\right)$$

Lemma 1.2.A

Lemma 1.2.A. If *P* is an $n \times n$ stochastic matrix, then det(P - I) = 0 where *I* is the $n \times n$ identity matrix.

Proof. Since $P = [p_{ij}]$ is a stochastic matrix, then the sum of the entries of each column is 1, $\sum_{i=1}^{n} p_{ij} = 1$ for each j = 1, 2, ..., n. Recall that the determinant is unaffected by row addition (see The Row-Addition Property of Theorem 4.2.A. Properties of the Determinant in my online Linear Algebra [MATH 2010] notes on 4.2. The Determinant of a Square Matrix). So we have

$$\det(P-I) = \det\left(\begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix} - \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}\right)$$

Lemma 1.2.A (continued 1)

Proof (continued).

$$det(P-I) = det \begin{pmatrix} p_{11}-1 & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22}-1 & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn}-1 \end{pmatrix}$$
$$= det \begin{pmatrix} \sum_{i=1}^{n} p_{i1}-1 & \sum_{i=1}^{n} p_{i2}-1 & \cdots & \sum_{i=1}^{n} p_{in}-1 \\ p_{21} & p_{22}-1 & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn}-1 \end{pmatrix}$$
by adding Rows 2 through *n* to Row 1

Lemma 1.2.A (continued 2)

Proof (continued).

$$det(P-I) = det \begin{pmatrix} \sum_{i=1}^{n} p_{i1} - 1 & \sum_{i=1}^{n} p_{i2} - 1 & \cdots & \sum_{i=1}^{n} p_{in} - 1 \\ p_{21} & p_{22} - 1 & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} - 1 \end{pmatrix}$$
$$= det \begin{pmatrix} 0 & 0 & \cdots & 0 \\ p_{21} & p_{22} - 1 & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} - 1 \end{pmatrix}$$
since $\sum_{i=1}^{n} p_{ij} = 1$ for each j
$$= 0$$
 expanding the determinant along the first row.

Graph Theory

So det(P - I) = 0, as claimed.

Lemma 1.2.B

Lemma 1.2.B. For *P* is an $n \times n$ stochastic matrix, if (\mathcal{Z}) is feasible:

$$z \ge Pz, \ z \ge 0, \ e^T z \ge 1,$$
 (2)

then (\mathcal{X}) is feasible:

$$x = Px, \ x \ge 0, \ e^T x = 1. \tag{2}$$

Proof. Suppose (\mathcal{Z}) is feasible and let $z \in \mathbb{R}^n$ satisfy (\mathcal{Z}). Consider $x = \frac{z}{e^T z}$. We then have by the linearity of matrix multiplication that

$$x - Px = \frac{z}{e^T z} - P\left(\frac{z}{e^T z}\right) = \frac{z}{e^T z} - \frac{Pz}{e^T z} = \frac{1}{e^T z}(z - Pz) \ge 0$$

where the last inequality holds because $z \ge Pz$ and so $z - Pz \ge 0$.

Lemma 1.2.B

Lemma 1.2.B. For *P* is an $n \times n$ stochastic matrix, if (\mathcal{Z}) is feasible:

$$z \ge Pz, \ z \ge 0, \ e^T z \ge 1,$$
 (2)

then (\mathcal{X}) is feasible:

$$x = Px, \ x \ge 0, \ e^T x = 1. \tag{(\mathcal{X})}$$

Proof. Suppose (\mathcal{Z}) is feasible and let $z \in \mathbb{R}^n$ satisfy (\mathcal{Z}) . Consider $x = \frac{z}{e^T z}$. We then have by the linearity of matrix multiplication that

$$x - Px = \frac{z}{e^{T}z} - P\left(\frac{z}{e^{T}z}\right) = \frac{z}{e^{T}z} - \frac{Pz}{e^{T}z} = \frac{1}{e^{T}z}(z - Pz) \ge 0$$

where the last inequality holds because $z \ge Pz$ and so $z - Pz \ge 0$. So the components of x - Px are nonnegative and since the row vector $e^T P \in \mathbb{R}^n$ has as its *j*th component the sum of the entries in the *j*th column of *P* (which is 1), so $e^T P = e^T$.

Lemma 1.2.B

Lemma 1.2.B. For *P* is an $n \times n$ stochastic matrix, if (\mathcal{Z}) is feasible:

$$z \ge Pz, \ z \ge 0, \ e^T z \ge 1,$$
 (2)

then (\mathcal{X}) is feasible:

$$x = Px, \ x \ge 0, \ e^T x = 1. \tag{2}$$

Proof. Suppose (\mathcal{Z}) is feasible and let $z \in \mathbb{R}^n$ satisfy (\mathcal{Z}) . Consider $x = \frac{z}{e^T z}$. We then have by the linearity of matrix multiplication that

$$x - Px = \frac{z}{e^{T}z} - P\left(\frac{z}{e^{T}z}\right) = \frac{z}{e^{T}z} - \frac{Pz}{e^{T}z} = \frac{1}{e^{T}z}(z - Pz) \ge 0$$

where the last inequality holds because $z \ge Pz$ and so $z - Pz \ge 0$. So the components of x - Px are nonnegative and since the row vector $e^T P \in \mathbb{R}^n$ has as its *j*th component the sum of the entries in the *j*th column of P (which is 1), so $e^T P = e^T$.

Lemma 1.2.B (continued)

Proof (continued). So by associativity,

$$e^{T}(x - Px) = e^{T}x - e^{T}(Px) = e^{T}x - (e^{T}P)x = e^{T}x - e^{T}x = 0,$$

and hence the sum of the entries of nonnegative vector x - Px is 0. That is x - Px = 0 and x = Px, so that the first condition of (\mathcal{X}) is satisfied. Next,

$$x = \frac{z}{e^T z} \ge 0$$
 since $z \ge 0$, and $e^T x = e^T \left(\frac{z}{e^T z}\right) = \frac{e^T z}{e^T z} = 1.$

Hence, the other two conditions of (\mathcal{X}) are satisfied and so (\mathcal{X}) is also feasible as claimed, where we have $x = \frac{z}{e^{T}z}$.

()

Lemma 1.2.B (continued)

Proof (continued). So by associativity,

$$e^{T}(x - Px) = e^{T}x - e^{T}(Px) = e^{T}x - (e^{T}P)x = e^{T}x - e^{T}x = 0,$$

and hence the sum of the entries of nonnegative vector x - Px is 0. That is x - Px = 0 and x = Px, so that the first condition of (\mathcal{X}) is satisfied. Next,

$$x = \frac{z}{e^T z} \ge 0$$
 since $z \ge 0$, and $e^T x = e^T \left(\frac{z}{e^T z}\right) = \frac{e^T z}{e^T z} = 1$.

Hence, the other two conditions of (\mathcal{X}) are satisfied and so (\mathcal{X}) is also feasible as claimed, where we have $x = \frac{z}{e^T z}$.

Theorem 1.2.A

Theorem 1.2.A. The Weak Duality Theorem. If $u \in \mathbb{R}^k$ is feasible for (\mathcal{P}) and $v \in \mathbb{R}^m$ is feasible for (\mathcal{D}) , then we have $\min_{u \in \mathbb{R}^k} \{ c^T u \mid Au \ge b, \ u \ge 0 \} \ge \max_{v \in \mathbb{R}^m} \{ b^T v \mid A^T v \le c, \ v \ge 0 \}.$

Proof. For $u \in \mathbb{R}^k$ feasible for (\mathcal{P}) and $v \in \mathbb{R}^m$ feasible for (\mathcal{D}) , we have

$$c^{T}u \geq (A^{T}v)^{T}u \text{ since } c \geq A^{T}v \text{ by } (\mathcal{D})$$

= $(v^{T}A)u = v^{T}(A^{T})^{T}u = v^{T}(Au)$ by properties of transpose
and associativity

$$\geq v^{T} b$$
 since $b \geq Au$ by (\mathcal{P})

= $b^T v$ since $v^T b = b^T v$ is a constant (a dot product).

Theorem 1.2.A

Theorem 1.2.A. The Weak Duality Theorem. If $u \in \mathbb{R}^k$ is feasible for (\mathcal{P}) and $v \in \mathbb{R}^m$ is feasible for (\mathcal{D}) , then we have $\min_{u \in \mathbb{R}^k} \{ c^T u \mid Au \ge b, \ u \ge 0 \} \ge \max_{v \in \mathbb{R}^m} \{ b^T v \mid A^T v \le c, \ v \ge 0 \}.$

Proof. For $u \in \mathbb{R}^k$ feasible for (\mathcal{P}) and $v \in \mathbb{R}^m$ feasible for (\mathcal{D}) , we have

$$c^{T}u \geq (A^{T}v)^{T}u \text{ since } c \geq A^{T}v \text{ by } (\mathcal{D})$$

= $(v^{T}A)u = v^{T}(A^{T})^{T}u = v^{T}(Au)$ by properties of transpose
and associativity
$$\geq v^{T}b \text{ since } b \geq Au \text{ by } (\mathcal{P})$$

= $b^{T}v \text{ since } v^{T}b = b^{T}v \text{ is a constant (a dot product).}$

This inequality implies

$$\min_{v \in \mathbb{R}^k} \{ c^{\mathsf{T}} u \mid Au \ge b, \ u \ge 0 \} \ge \max_{v \in \mathbb{R}^m} \{ b^{\mathsf{T}} v \mid A^{\mathsf{T}} v \le c, \ v \ge 0 \},$$

as claimed.

Theorem 1.2.A

Theorem 1.2.A. The Weak Duality Theorem. If $u \in \mathbb{R}^k$ is feasible for (\mathcal{P}) and $v \in \mathbb{R}^m$ is feasible for (\mathcal{D}) , then we have $\min_{u \in \mathbb{R}^k} \{ c^T u \mid Au \ge b, \ u \ge 0 \} \ge \max_{v \in \mathbb{R}^m} \{ b^T v \mid A^T v \le c, \ v \ge 0 \}.$

Proof. For $u \in \mathbb{R}^k$ feasible for (\mathcal{P}) and $v \in \mathbb{R}^m$ feasible for (\mathcal{D}) , we have

$$c^{T}u \geq (A^{T}v)^{T}u \text{ since } c \geq A^{T}v \text{ by } (\mathcal{D})$$

= $(v^{T}A)u = v^{T}(A^{T})^{T}u = v^{T}(Au)$ by properties of transpose
and associativity
$$\geq v^{T}b \text{ since } b \geq Au \text{ by } (\mathcal{P})$$

= $b^{T}v \text{ since } v^{T}b = b^{T}v \text{ is a constant (a dot product).}$

This inequality implies

$$\min_{u\in\mathbb{R}^k} \{ c^{\mathsf{T}}u \mid Au \ge b, \ u \ge 0 \} \ge \max_{v\in\mathbb{R}^m} \{ b^{\mathsf{T}}v \mid A^{\mathsf{T}}v \le c, \ v \ge 0 \},$$

as claimed.

Theorem 1.2.C

Theorem 1.2.C. For stochastic matrix P, the system

$$x = Px, \ x \ge 0, \ e^T x = 1. \tag{2}$$

is feasible. That is, there exists $x \in \mathbb{R}^n$ satisfying the conditions of (\mathcal{X}) .

Proof. First, we claim that $\overline{y} = e$ and $\overline{y}_{n+1} = 0$ give a solution to $(\mathcal{D}_{\mathcal{Z}})$. We have

$$\max_{y \in \mathbb{R}^n, y_{n+1} \in \mathbb{R}} \left\{ y_{n+1} \mid y \le P^T y - y_{n+1} e, y \ge 0, y_{n+1} \ge 0 \right\}, \qquad (\mathcal{D}_{\mathcal{Z}})$$

and notice that $e = \overline{y} \leq P^T \overline{y} - \overline{y}_{n+1}e = P^T e - 0e = P^T e = e$ since P is a stochastic matrix and hence the sum of the entries of each column of P is 1 (and therefore the sum of the entries of each row of P^T is 1). Next we need to show the maximum of the admissible y_{n+1} 's does not exceed $\overline{y}_{n+1} = 0$.

Theorem 1.2.C

Theorem 1.2.C. For stochastic matrix P, the system

$$x = Px, \ x \ge 0, \ e^T x = 1. \tag{\mathcal{X}}$$

is feasible. That is, there exists $x \in \mathbb{R}^n$ satisfying the conditions of (\mathcal{X}) .

Proof. First, we claim that $\overline{y} = e$ and $\overline{y}_{n+1} = 0$ give a solution to $(\mathcal{D}_{\mathcal{Z}})$. We have

$$\max_{y\in\mathbb{R}^n, y_{n+1}\in\mathbb{R}}\left\{y_{n+1} \mid y \leq P^T y - y_{n+1}e, y \geq 0, y_{n+1} \geq 0\right\}, \qquad (\mathcal{D}_{\mathcal{Z}})$$

and notice that $e = \overline{y} \leq P^T \overline{y} - \overline{y}_{n+1}e = P^T e - 0e = P^T e = e$ since P is a stochastic matrix and hence the sum of the entries of each column of P is 1 (and therefore the sum of the entries of each row of P^T is 1). Next we need to show the maximum of the admissible y_{n+1} 's does not exceed $\overline{y}_{n+1} = 0$.

Theorem 1.2.C (continued 1)

Proof (continued). Since $y \leq P^T y - y_{n+1}e$ then the maximum component of $y \in \mathbb{R}^n$ is less than or equal to the maximum component of $P^T y - y_{n+1}e \in \mathbb{R}^n$. Next, the maximum component of $P^T y$ is less than or equal to the maximum component of $P^T e$ (which is just the maximum row sum of P^T , which is 1 as described above) times the maximum component of y. We therefore have (using subscripts to indicate components of vectors):

$$\max_{1 \le i \le n} \{y_i\} \le \max_{1 \le i \le n} (P^T y - y_{n+1} e) = \max_{1 \le i \le n} (P^T y)_i - y_{n+1}$$

$$\leq \max_{1 \leq i \leq n} (P^{T} e)_{i} \max_{1 \leq i \leq n} y_{i} - y_{n+1} = \max_{1 \leq i \leq n} y_{i} - y_{n+1}$$

where the last equality holds because $\max_{1 \le i \le n} (P^T e)_i = 1$ as described above. Hence $y_{n+1} \le \max_{1 \le i \le n} y_i - \max_{1 \le i \le n} y_i = 0 = \overline{y}_{n+1}$. Therefore $\overline{y} = e$ and $\overline{y}_{n+1} = 0$ is a solution to $(\mathcal{D}_{\mathcal{Z}})$.

Graph Theory

Theorem 1.2.C (continued 1)

Proof (continued). Since $y \leq P^T y - y_{n+1}e$ then the maximum component of $y \in \mathbb{R}^n$ is less than or equal to the maximum component of $P^T y - y_{n+1}e \in \mathbb{R}^n$. Next, the maximum component of $P^T y$ is less than or equal to the maximum component of $P^T e$ (which is just the maximum row sum of P^T , which is 1 as described above) times the maximum component of y. We therefore have (using subscripts to indicate components of vectors):

$$\max_{1 \le i \le n} \{y_i\} \le \max_{1 \le i \le n} (P^T y - y_{n+1} e) = \max_{1 \le i \le n} (P^T y)_i - y_{n+1}$$

$$\leq \max_{1 \leq i \leq n} (P^{I} e)_{i} \max_{1 \leq i \leq n} y_{i} - y_{n+1} = \max_{1 \leq i \leq n} y_{i} - y_{n+1}$$

where the last equality holds because $\max_{1 \le i \le n} (P^T e)_i = 1$ as described above. Hence $y_{n+1} \le \max_{1 \le i \le n} y_i - \max_{1 \le i \le n} y_i = 0 = \overline{y}_{n+1}$. Therefore $\overline{y} = e$ and $\overline{y}_{n+1} = 0$ is a solution to $(\mathcal{D}_{\mathcal{Z}})$.

Theorem 1.2.C (continued 2)

Theorem 1.2.C. For stochastic matrix P, the system

$$x = Px, \ x \ge 0, \ e^T x = 1. \tag{2}$$

is feasible. That is, there exists $x \in \mathbb{R}^n$ satisfying the conditions of (\mathcal{X}) .

Proof (continued). So the dual problem $(\mathcal{D}_{\mathcal{Z}})$ is solvable. Hence, by the Strong Duality Theorem (Theorem 1.2.B), the primal problem $(\mathcal{P}_{\mathcal{Z}})$ is solvable. So by Note 1.2.C, this implies the feasibility of (\mathcal{Z}) . Then by the Lemma 1.2.B, we have the feasibility of (\mathcal{X}) , as claimed.