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Section 1.2. Results

Note. As seen in the previous section , the Google Problem involves finding vector

x ∈ Rn such that:

x = Px, x ≥ 0, x 6= 0. (R)

Here, n × n matrix P with nonnegative entries is a “transition matrix” in which

the sum of the entries in each column is 1. Such a matrix is also called a stochastic

matrix (or a “Markov matrix”). If this section we explore the existence of a solution

to (R).

Lemma 1.2.A. If P is an n × n stochastic matrix, then det(P − I) = 0 where I

is the n× n identity matrix.

Note. Lemma 1.2.A guarantees that matrix P has λ = 1 as an eigenvalue, and

hence there is a nonzero vector x (recall that eigenvectors are by definition nonzero)

such that x = Px. However, we have not yet established that there is an eigenvector

x of P satisfying x > 0. So we do not yet have a solution to the Google Problem

(R). We will prove below that such an eigenvector does in fact exist. Next, we find

such a vector for the matrix P associated with network N1 of the previous section.
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Note. Consider again matrix P associated the network N1 given in Section 1.1:

P =



0 0 1 1/3 1/3

1 0 0 0 1/3

0 1/2 0 1/3 1/3

0 1/2 0 0 0

0 0 0 1/3 0


.

Since P is a stochastic matrix, then we know by Lemma 1.2.A that λ = 1 is an

eigenvalue of P . That is, det(P − I) = 0. Therefore, matrix P is singular (i.e., not

invertible) by Theorem 4.3. Determinant Criterion for Invertibility of my online

Linear Algebra (MATH 2010) notes on Section 4.2. The Determinant of a Square

Matrix. So by “Corollary 2. The Homogeneous Case” of Section 1.6. Homogeneous

Systems, Subspaces and Bases from Linear Algebra, there is a nontrivial solution

to the system of equations (P−I)x = 0 and hence there is an (nonzero) eigenvector

x of P associated with λ = 1. So we consider the augmented matrix (P − I | 0)

and solve it (using Wolfram Alpha Wα, for example):

(P − I | 0) =



−1 0 1 1/3 1/3 0

1 −1 0 0 1/3 0

0 1/2 −1 1/3 1/3 0

0 1/2 0 −1 0 0

0 0 0 1/3 −1 0


Wα

˜



1 0 0 0 −17/3 0

0 1 0 0 −6 0

0 0 1 0 −13/3 0

0 0 0 1 −3 0

0 0 0 0 0 0


.

So with t as a “free variable,” we have that every eigenvector associated with

λ = 1 is of the form x = t(17/3, 6, 13/3, 3, 1)T where t ∈ R and t 6= 0. We

seek an eigenvector whose components sum to 1 (a type of “normalization” as

Shikhman and Müller call it, but not the usual normalization since we do not

https://faculty.etsu.edu/gardnerr/2010/c4s2.pdf
https://faculty.etsu.edu/gardnerr/2010/c4s2.pdf
https://faculty.etsu.edu/gardnerr/2010/c1s6.pdf
https://faculty.etsu.edu/gardnerr/2010/c1s6.pdf
https://www.wolframalpha.com/
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get a unit vector. . . at not a unit vector under the usual Euclidean norm on Rn,

but there are other norms such as the “`1 norm” on Rn under the norm of a

vector is the sum of the absolute value of the components). Notice that 17/3 +

6 + 13/3 + 3 + 1 = 20, then we set t = 1/20 and consider the eigenvector x =

(17/60, 6/20, 13/60, 3/20, 1/20)T = (17/60, 18/60, 13/60, 9/60, 3/60)T . Since each

component of x is nonnegative then this gives a solution to (R) for matrix P , and

hence gives a solution to the Google Problem for the network N1. Comparing the

components of x we have the ranking:

Web page i: 1 2 3 4 5

Component xi: 17/60 18/60 13/60 9/60 3/60

Rank: II I III IV V

Notice that web page 2 has the top ranking, even though it only has two incoming

hyperlinks. Recall that in Section 1.1 we started with web page 2 ranked as III,

behind web pages 1 and 3 (based simply on the number of incoming hyperlinks).

Note 1.2.A. We consider the column vector e ∈ Rn with all components of 1,

e = (1, 1, . . . , 1)T . We then have that eT is the row vector eT = (1, 1, . . . , 1). Notice

that the components of column vector x sum to 1 if eTx = 1. In these notes,

we treat all products as matrix products so we do not use dot product notation

(whereas Shikhman and Müller represent all matrix and dot products with ·). We

can then modify the Google Problem for stochastic matrix P to the following:

x = Px, x ≥ 0, eTx = 1. (X )

To establish the “feasibility” (i.e., the existence of the desired vector x) of (X ), we
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consider the “relaxed version” of (X ):

z ≥ Pz, z ≥ 0, eTz ≥ 1. (Z)

We claim that a solution z of (Z) implies a solution x of (X) in the following (in

which we adopt the “feasibility” terminology).

Lemma 1.2.B. For P is an n× n stochastic matrix, if (Z) is feasible:

z ≥ Pz, z ≥ 0, eTz ≥ 1, (Z)

then (X ) is feasible:

x = Px, x ≥ 0, eTx = 1. (X )

Note 1.2.B. We now turn our attention to the feasibility of (Z). We do so by

considering the following two questions. We consider c ∈ Rk, A ∈ Rm×k, and

b ∈ Rm, and look for u ∈ Rk and v ∈ Rm satisfying:

min
u∈Rk

{cTu | Au ≥ b, u ≥ 0}, (P)

max
v∈Rm

{bTv | ATv ≤ c, v ≥ 0}. (D)

These are the “primal” and “dual” linear programming problems, respectively. In

applications, c ∈ Rk, A ∈ Rm×k, and b ∈ Rm contain data.

Theorem 1.2.A. The Weak Duality Theorem.

If u ∈ Rk is feasible for (P) and v ∈ Rm is feasible for (D), then we have

min
u∈Rk

{cTu | Au ≥ b, u ≥ 0} ≥ max
v∈Rm

{bTv | ATv ≤ c, v ≥ 0}.
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Note. We now state the Strong Duality Theorem. For now, we do not offer a

proof but instead reference Chapter 5, “Duality,” of S. Boyd and L. Vandenberghe’s

Convex Optimization, Cambridge University Press (2004); a copy is available online

on Stephen Boyd’s website (accessed 4/23/2021).

Theorem 1.2.B. The Strong Duality Theorem.

(P) is solvable if and only if (D) is solvable and, in this case, the optimal values of

(P) and (D) coincide (that is, the minimum value given in (P) equals the maximum

value given in (D)).

Note 1.2.C. Consider the linear programming problem (where matrix P is n×n)

min
z∈Rn

{0Tz | z ≥ Pz, z ≥ 0, eTz ≥ 1}. (PZ)

Now if there is a z ∈ Rn satisfying the conditions z ≥ Pz, z ≥ 0, and eTz ≥ 1 (that

is, if (Z) is feasible) then (PZ) is solvable (of course the minimum is 0). Conversely,

if (PZ) is solvable then there is a vector satisfying the conditions z ≥ Pz, z ≥ 0,

and eTz ≥ 1, so that (Z) is feasible. Hence, (Z) is feasible if and only if (PZ) is

solvable.

Note. Notice that in (PZ), z ≥ Pz is equivalent to z − Pz ≥ 0 or (I − P )z ≥ 0,

so we can combine the two conditions z ≥ Pz and eTz ≥ 1 of (PZ) into a single

condition using a partitioned matrix as

 I − P

eT

 z ≥

 0

1

; for a discussion of

partitioned matrices, see my online notes for Theory of Matrices (MATH 5090) on

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
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Section 3.1. Basic Definitions and Notation. Therefore we can write (PZ) in primal

form as

min
z∈Rn

0Tz

∣∣∣∣∣∣
 I − P

eT

 z ≥

 0

1

 , z ≥ 0

 .

Notice that in the notation of (P), we have here that A =

 I − P

eT

 is an

(n + 1) × n matrix. So AT =

 I − P

eT

T

is n × (n + 1) and the dual problem

then involves vectors in Rn+1. We consider such a vector as partitioned into a

vector y ∈ Rn and a vector yn+1 ∈ R1. Also in the notation of (P), we have here

b =

 0

1

 ∈ Rn+1 (here “0” denotes a vector in Rn), so bT =

 0

1

T

is an

1× (n + 1) matrix. So the dual problem corresponding the problem here is

max
y∈Rn, yn+1∈R


 0

1

T  y

yn+1


∣∣∣∣∣∣∣

 I − P

eT

T  y

yn+1

 ≤ 0, y ≥ 0, yn+1 ≥ 0

 .

Notice that

 0

1

T  y

yn+1

 = yn+1 and

 I − P

eT

T  y

yn+1

 =
(
(I − P )T e

)  y

yn+1


= (I − P )Ty + eyn+1 = Iy − P Ty + yn+1e = y − P Ty + yn+1e,

so that the dual problem can be simplified to

max
y∈Rn, yn+1∈R

{
yn+1 | y ≤ P Ty − yn+1e, y ≥ 0, yn+1 ≥ 0

}
. (DZ)

https://faculty.etsu.edu/gardnerr/5090/notes/Chapter-3-1.pdf
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Theorem 1.2.C. For stochastic matrix P , the system

x = Px, x ≥ 0, eTx = 1. (X )

is feasible. That is, there exists x ∈ Rn satisfying the conditions of (X ).
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