Section 1.2. Results

Note. As seen in the previous section , the Google Problem involves finding vector $x \in \mathbb{R}^n$ such that:

$$
x = Px, \ x \ge 0, \ x \ne 0. \tag{R}
$$

Here, $n \times n$ matrix P with nonnegative entries is a "transition matrix" in which the sum of the entries in each column is 1. Such a matrix is also called a stochastic matrix (or a "Markov matrix"). If this section we explore the existence of a solution to (\mathcal{R}) .

Lemma 1.2.A. If P is an $n \times n$ stochastic matrix, then $\det(P - I) = 0$ where I is the $n \times n$ identity matrix.

Note. Lemma 1.2.A guarantees that matrix P has $\lambda = 1$ as an eigenvalue, and hence there is a nonzero vector x (recall that eigenvectors are by definition nonzero) such that $x = Px$. However, we have not yet established that there is an eigenvector x of P satisfying $x > 0$. So we do not yet have a solution to the Google Problem (\mathcal{R}) . We will prove below that such an eigenvector does in fact exist. Next, we find such a vector for the matrix P associated with network N1 of the previous section. Note. Consider again matrix P associated the network N1 given in Section 1.1:

$$
P = \left(\begin{array}{cccc} 0 & 0 & 1 & 1/3 & 1/3 \\ 1 & 0 & 0 & 0 & 1/3 \\ 0 & 1/2 & 0 & 1/3 & 1/3 \\ 0 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/3 & 0 \end{array}\right)
$$

.

Since P is a stochastic matrix, then we know by Lemma 1.2.A that $\lambda = 1$ is an eigenvalue of P. That is, $\det(P - I) = 0$. Therefore, matrix P is singular (i.e., not invertible) by Theorem 4.3. Determinant Criterion for Invertibility of my online Linear Algebra (MATH 2010) notes on [Section 4.2. The Determinant of a Square](https://faculty.etsu.edu/gardnerr/2010/c4s2.pdf) [Matrix.](https://faculty.etsu.edu/gardnerr/2010/c4s2.pdf) So by "Corollary 2. The Homogeneous Case" of [Section 1.6. Homogeneous](https://faculty.etsu.edu/gardnerr/2010/c1s6.pdf) [Systems, Subspaces and Bases](https://faculty.etsu.edu/gardnerr/2010/c1s6.pdf) from Linear Algebra, there is a nontrivial solution to the system of equations $(P-I)x = 0$ and hence there is an (nonzero) eigenvector x of P associated with $\lambda = 1$. So we consider the augmented matrix $(P - I | 0)$ and solve it (using [Wolfram Alpha](https://www.wolframalpha.com/) $W\alpha$, for example):

$$
(P-I | 0) = \begin{pmatrix} -1 & 0 & 1 & 1/3 & 1/3 & | & 0 \\ 1 & -1 & 0 & 0 & 1/3 & | & 0 \\ 0 & 1/2 & -1 & 1/3 & 1/3 & | & 0 \\ 0 & 1/2 & 0 & -1 & 0 & | & 0 \\ 0 & 0 & 0 & 1/3 & -1 & | & 0 \end{pmatrix} \xrightarrow{\text{W}\alpha} \begin{pmatrix} 1 & 0 & 0 & 0 & -17/3 & | & 0 \\ 0 & 1 & 0 & 0 & -6 & | & 0 \\ 0 & 0 & 1 & 0 & -13/3 & | & 0 \\ 0 & 0 & 0 & 1 & -3 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}
$$

So with t as a "free variable," we have that every eigenvector associated with $\lambda = 1$ is of the form $x = t(17/3, 6, 13/3, 3, 1)^T$ where $t \in \mathbb{R}$ and $t \neq 0$. We seek an eigenvector whose components sum to 1 (a type of "normalization" as Shikhman and Müller call it, but not the usual normalization since we do not

.

get a unit vector...at not a unit vector under the usual Euclidean norm on \mathbb{R}^n , but there are other norms such as the " ℓ^1 norm" on \mathbb{R}^n under the norm of a vector is the sum of the absolute value of the components). Notice that $17/3 +$ $6 + 13/3 + 3 + 1 = 20$, then we set $t = 1/20$ and consider the eigenvector $x =$ $(17/60, 6/20, 13/60, 3/20, 1/20)^T = (17/60, 18/60, 13/60, 9/60, 3/60)^T$. Since each component of x is nonnegative then this gives a solution to (\mathcal{R}) for matrix P, and hence gives a solution to the Google Problem for the network N1. Comparing the components of x we have the ranking:

Notice that web page 2 has the top ranking, even though it only has two incoming hyperlinks. Recall that in Section 1.1 we started with web page 2 ranked as III, behind web pages 1 and 3 (based simply on the number of incoming hyperlinks).

Note 1.2.A. We consider the column vector $e \in \mathbb{R}^n$ with all components of 1, $e = (1, 1, \ldots, 1)^T$. We then have that e^T is the row vector $e^T = (1, 1, \ldots, 1)$. Notice that the components of column vector x sum to 1 if $e^T x = 1$. In these notes, we treat all products as matrix products so we do not use dot product notation (whereas Shikhman and Müller represent all matrix and dot products with \cdot). We can then modify the Google Problem for stochastic matrix P to the following:

$$
x = Px, \ x \ge 0, \ e^T x = 1. \tag{X}
$$

To establish the "feasibility" (i.e., the existence of the desired vector x) of (\mathcal{X}) , we

consider the "relaxed version" of (X) :

$$
z \ge Pz, \ z \ge 0, \ e^T z \ge 1. \tag{Z}
$$

We claim that a solution z of (\mathcal{Z}) implies a solution x of (X) in the following (in which we adopt the "feasibility" terminology).

Lemma 1.2.B. For P is an $n \times n$ stochastic matrix, if (Z) is feasible:

$$
z \ge Pz, \ z \ge 0, \ e^T z \ge 1,\tag{Z}
$$

then (X) is feasible:

$$
x = Px, \ x \ge 0, \ e^T x = 1. \tag{X}
$$

Note 1.2.B. We now turn our attention to the feasibility of (Z) . We do so by considering the following two questions. We consider $c \in \mathbb{R}^k$, $A \in \mathbb{R}^{m \times k}$, and $b \in \mathbb{R}^m$, and look for $u \in \mathbb{R}^k$ and $v \in \mathbb{R}^m$ satisfying:

$$
\min_{u \in \mathbb{R}^k} \{ c^T u \mid Au \ge b, \ u \ge 0 \},\tag{P}
$$

$$
\max_{v \in \mathbb{R}^m} \{ b^T v \mid A^T v \le c, \ v \ge 0 \}. \tag{D}
$$

These are the "primal" and "dual" linear programming problems, respectively. In applications, $c \in \mathbb{R}^k$, $A \in \mathbb{R}^{m \times k}$, and $b \in \mathbb{R}^m$ contain data.

Theorem 1.2.A. The Weak Duality Theorem.

If $u \in \mathbb{R}^k$ is feasible for (\mathcal{P}) and $v \in \mathbb{R}^m$ is feasible for (\mathcal{D}) , then we have

$$
\min_{u \in \mathbb{R}^k} \{c^T u \mid Au \ge b, \ u \ge 0\} \ge \max_{v \in \mathbb{R}^m} \{b^T v \mid A^T v \le c, \ v \ge 0\}.
$$

Note. We now state the Strong Duality Theorem. For now, we do not offer a proof but instead reference Chapter 5, "Duality," of S. Boyd and L. Vandenberghe's Convex Optimization, Cambridge University Press (2004); a copy is available online on [Stephen Boyd's website](https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf) (accessed 4/23/2021).

Theorem 1.2.B. The Strong Duality Theorem.

 (\mathcal{P}) is solvable if and only if (\mathcal{D}) is solvable and, in this case, the optimal values of (\mathcal{P}) and (\mathcal{D}) coincide (that is, the minimum value given in (\mathcal{P}) equals the maximum value given in (D)).

Note 1.2.C. Consider the linear programming problem (where matrix P is $n \times n$)

$$
\min_{z \in \mathbb{R}^n} \{ 0^T z \mid z \ge Pz, \ z \ge 0, \ e^T z \ge 1 \}. \tag{Pz}
$$

Now if there is a $z \in \mathbb{R}^n$ satisfying the conditions $z \geq Pz$, $z \geq 0$, and $e^T z \geq 1$ (that is, if (\mathcal{Z}) is feasible) then $(\mathcal{P}_{\mathcal{Z}})$ is solvable (of course the minimum is 0). Conversely, if (\mathcal{P}_z) is solvable then there is a vector satisfying the conditions $z \geq Pz$, $z \geq 0$, and $e^T z \geq 1$, so that (\mathcal{Z}) is feasible. Hence, (\mathcal{Z}) is feasible if and only if $(\mathcal{P}_{\mathcal{Z}})$ is solvable.

Note. Notice that in (\mathcal{P}_z) , $z \geq Pz$ is equivalent to $z - Pz \geq 0$ or $(I - P)z \geq 0$, so we can combine the two conditions $z \geq Pz$ and $e^Tz \geq 1$ of (\mathcal{P}_z) into a single condition using a partitioned matrix as $\sqrt{ }$ $\overline{1}$ $I - F$ e^{T} \setminus $\Big| z \geq$ $\sqrt{ }$ \mathcal{L} $\overline{0}$ 1 \setminus ; for a discussion of partitioned matrices, see my online notes for Theory of Matrices (MATH 5090) on [Section 3.1. Basic Definitions and Notation.](https://faculty.etsu.edu/gardnerr/5090/notes/Chapter-3-1.pdf) Therefore we can write (\mathcal{P}_z) in primal form as

$$
\min_{z \in \mathbb{R}^n} \left\{ 0^T z \mid \left(\begin{array}{c} I - P \\ e^T \end{array} \right) z \ge \left(\begin{array}{c} 0 \\ 1 \end{array} \right), z \ge 0 \right\}.
$$

Notice that in the notation of (\mathcal{P}) , we have here that $A =$ $\sqrt{ }$ $\overline{1}$ $I - F$ e^{T} \setminus is an

 $(n + 1) \times n$ matrix. So A^T = $\sqrt{ }$ $\overline{1}$ $I - P$ e^{T} \setminus $\overline{1}$ \mathcal{I} is $n \times (n + 1)$ and the dual problem then involves vectors in \mathbb{R}^{n+1} . We consider such a vector as partitioned into a vector $y \in \mathbb{R}^n$ and a vector $y_{n+1} \in \mathbb{R}^1$. Also in the notation of (\mathcal{P}) , we have here $b =$ $\sqrt{ }$ $\overline{1}$ 0 1 \setminus $\Big\} \in \mathbb{R}^{n+1}$ (here "0" denotes a vector in \mathbb{R}^n), so $b^T =$ $\sqrt{ }$ $\overline{1}$ $\overline{0}$ 1 \setminus $\overline{1}$ T is an $1 \times (n+1)$ matrix. So the dual problem corresponding the problem here is

$$
\max_{y \in \mathbb{R}^n, y_{n+1} \in \mathbb{R}} \left\{ \left(\begin{array}{c} 0 \\ 1 \end{array} \right)^T \left(\begin{array}{c} y \\ y_{n+1} \end{array} \right) \ \left| \begin{array}{c} I - P \\ e^T \end{array} \right)^T \left(\begin{array}{c} y \\ y_{n+1} \end{array} \right) \leq 0, \ y \geq 0, \ y_{n+1} \geq 0 \right\}.
$$

Notice that $\sqrt{ }$ $\overline{1}$ 0 1 \setminus $\overline{1}$ T $\left($ $\overline{1}$ \hat{y} y_{n+1} \setminus $= y_{n+1}$ and $\sqrt{ }$ $\overline{1}$ $I - F$ e^{T} \setminus $\overline{1}$ T / $\overline{1}$ \hat{y} y_{n+1} \setminus $\Big| = \left((I - P)^T \ e \right)$ $\sqrt{ }$ $\overline{1}$ \hat{y} y_{n+1} \setminus $\overline{1}$ $= (I - P)^{T}y + ey_{n+1} = Iy - P^{T}y + y_{n+1}e = y - P^{T}y + y_{n+1}e,$

so that the dual problem can be simplified to

$$
\max_{y \in \mathbb{R}^n, y_{n+1} \in \mathbb{R}} \left\{ y_{n+1} \mid y \le P^T y - y_{n+1} e, y \ge 0, y_{n+1} \ge 0 \right\}. \tag{D_Z}
$$

Theorem 1.2.C. For stochastic matrix P , the system

$$
x = Px, \ x \ge 0, \ e^T x = 1. \tag{X}
$$

is feasible. That is, there exists $x \in \mathbb{R}^n$ satisfying the conditions of (\mathcal{X}) .

Revised: 4/23/2021