Design Theory

Chapter 1. Steiner Triple Systems 1.1. The Existence Problem—Proofs of Theorems



Table of contents

Lemma 1.1.A

Lemma 1.1.A. If a Steiner triple system of order v exists then $v \equiv 1$ or 3 (mod 6).

Proof. If (S, T) is a Steiner triple system of order v, then any triple, say $\{a, b, c\}$, contains three 2-element subsets, namely $\{a, b\}$, $\{a, c\}$, $\{b, c\}$, and S contains $\binom{v}{2} = \frac{v(v-1)}{2}$ 2-element subsets. Since every pair of distinct elements of S occurs together in exactly one triple of T, then $3|T| = \binom{v}{2}$, or

$$T| = v(v-1)/6.$$
 (*)

Lemma 1.1.A

Lemma 1.1.A. If a Steiner triple system of order v exists then $v \equiv 1$ or 3 (mod 6).

Proof. If (S, T) is a Steiner triple system of order v, then any triple, say $\{a, b, c\}$, contains three 2-element subsets, namely $\{a, b\}$, $\{a, c\}$, $\{b, c\}$, and S contains $\binom{v}{2} = \frac{v(v-1)}{2}$ 2-element subsets. Since every pair of distinct elements of S occurs together in exactly one triple of T, then $3|T| = \binom{v}{2}$, or

$$|T| = v(v-1)/6.$$
 (*)

For any $x \in S$, set $T(x) = \{t \setminus \{x\} \mid x \in t \in T\}$ (so T(x) consists of all 2-element subsets of S that do not include x). Then T(x) partitions $S \setminus \{x\}$ into 2-element subsets. Since $|S \setminus \{x\}| = v - 1$, then we must have that v - 1 is even (since we have partitioned this set of size v - 1 into subsets of size 2).

- ()

Lemma 1.1.A

Lemma 1.1.A. If a Steiner triple system of order v exists then $v \equiv 1$ or 3 (mod 6).

Proof. If (S, T) is a Steiner triple system of order v, then any triple, say $\{a, b, c\}$, contains three 2-element subsets, namely $\{a, b\}$, $\{a, c\}$, $\{b, c\}$, and S contains $\binom{v}{2} = \frac{v(v-1)}{2}$ 2-element subsets. Since every pair of distinct elements of S occurs together in exactly one triple of T, then $3|T| = \binom{v}{2}$, or

$$|T| = v(v-1)/6.$$
 (*)

For any $x \in S$, set $T(x) = \{t \setminus \{x\} \mid x \in t \in T\}$ (so T(x) consists of all 2-element subsets of S that do not include x). Then T(x) partitions $S \setminus \{x\}$ into 2-element subsets. Since $|S \setminus \{x\}| = v - 1$, then we must have that v - 1 is even (since we have partitioned this set of size v - 1 into subsets of size 2).

Lemma 1.1.A (continued)

Lemma 1.1.A. If a Steiner triple system of order v exists then $v \equiv 1$ or 3 (mod 6).

Proof (continued). That is, v must be odd and so $v \equiv 1, 3$, or 5 (mod 6). But for $v \equiv 5 \pmod{6}$, we have by (*) that |T| = v(v-1)/6 is not an integer (since $v(v-1) \equiv 2 \pmod{6}$), so we cannot have $v \equiv 5 \pmod{6}$. So necessary conditions for a STS(v) to exist is that $v \equiv 1$ or 3 (mod 6), as claimed.