Design Theory

Chapter 1. Steiner Triple Systems 1.7. Cyclic Steiner Triple Systems—Proofs of Theorems

Table of contents

Theorem 1.7.6

Theorem 1.7.6. A cyclic Steiner triple system of order v exists if and only if $v \equiv 1$ or 3 (mod 6) and $v \neq 9$.

Proof. For $v \equiv 1$ or 3 (mod 6), $v \neq 9$, let D(v) denote the set of difference triples that are a solution to Heffter's Difference Problem. Let B(v) be the collection of base blocks obtained from the difference triples in D(v). Define a cyclic STS(v), (S, T), where $S = \{0, 1, 2, ..., v - 1\}$ and T is as follows:

(1) If
$$v = 6n + 1$$
 then

$$T = \{\{i, x+i, x+y+i\} \mid 0 \le i \le v-1, \{0, x, x+y\} \in B(v)\}.$$

(2) If v = 6n + 3 then

 $T = \{\{i, x+i, x+y+i\} \mid 0 \le i \le v-1, \{0, x, x+y\} \in B(v)\}$

 $\cup\{\{i, 2n+1+i, 4n+2+i\} \mid 0 \le i \le 2n\}.$

Theorem 1.7.6

Theorem 1.7.6. A cyclic Steiner triple system of order v exists if and only if $v \equiv 1$ or 3 (mod 6) and $v \neq 9$.

Proof. For $v \equiv 1$ or 3 (mod 6), $v \neq 9$, let D(v) denote the set of difference triples that are a solution to Heffter's Difference Problem. Let B(v) be the collection of base blocks obtained from the difference triples in D(v). Define a cyclic STS(v), (S, T), where $S = \{0, 1, 2, ..., v - 1\}$ and T is as follows:

(1) If
$$v = 6n + 1$$
 then

$$T = \{\{i, x+i, x+y+i\} \mid 0 \le i \le v-1, \{0, x, x+y\} \in B(v)\}.$$

(2) If v = 6n + 3 then

 $T = \{\{i, x+i, x+y+i\} \mid 0 \le i \le v-1, \{0, x, x+y\} \in B(v)\}$

$$\cup \{\{i, 2n + 1 + i, 4n + 2 + i\} \mid 0 \le i \le 2n\}.$$

Theorem 1.7.6 (continued 1)

Theorem 1.7.6. A cyclic Steiner triple system of order v exists if and only if $v \equiv 1$ or 3 (mod 6) and $v \neq 9$.

Proof (continued). For (1), there are 3n differences and n base blocks, so T contains vn = v(v-1)/6 triples. In (2), the set of triples $\{\{i, 2n + 1 + i, 4n + 2 + i\} \mid 0 \le i \le 2n\}$ (which is of cardinality v/2 = 2n + 1) is a *short orbit* and $\{0, 2n + 1m4n + 2\}$ is the base block for the short orbit. For (2), there are 3n + 1 differences, one short orbit base block, and n non-short-orbit base blocks so that T contains $vn+v/3 = v(v-3)/6+v/3 = (v(v-3)+2v)/6 = (v^2-v)/6 = v(v-1)/6$ triples.

Notice that for any $\{x, y, z\} \in D(v)$, the corresponding triples $\{i, x + i, x + y + i\}$ in *T* have the three associated differences (x + i) - (i) = x, (x + y + i) - (x + i) = y, and $(x + y + i) - (i) = x + y \equiv \pm z \pmod{v}$.

Theorem 1.7.6 (continued 1)

Theorem 1.7.6. A cyclic Steiner triple system of order v exists if and only if $v \equiv 1$ or 3 (mod 6) and $v \neq 9$.

Proof (continued). For (1), there are 3n differences and n base blocks, so T contains vn = v(v-1)/6 triples. In (2), the set of triples $\{\{i, 2n + 1 + i, 4n + 2 + i\} \mid 0 \le i \le 2n\}$ (which is of cardinality v/2 = 2n + 1) is a *short orbit* and $\{0, 2n + 1m4n + 2\}$ is the base block for the short orbit. For (2), there are 3n + 1 differences, one short orbit base block, and n non-short-orbit base blocks so that T contains $vn+v/3 = v(v-3)/6+v/3 = (v(v-3)+2v)/6 = (v^2-v)/6 = v(v-1)/6$ triples.

Notice that for any $\{x, y, z\} \in D(v)$, the corresponding triples $\{i, x + i, x + y + i\}$ in *T* have the three associated differences (x + i) - (i) = x, (x + y + i) - (x + i) = y, and $(x + y + i) - (i) = x + y \equiv \pm z \pmod{v}$.

Theorem 1.7.6 (continued 2)

Theorem 1.7.6. A cyclic Steiner triple system of order v exists if and only if $v \equiv 1$ or 3 (mod 6) and $v \neq 9$.

Proof (continued). So for any pair of symbols *a* and *b* in $\{0, 1, \ldots, v - 1\}$, say a - b = d or b - a = -d where we can assume $1 \le d \le (v - 1)/2$ by Note 1.7.A. Then either (a) v = 6n + 3 and d = 2n + 1 in which case $\{a, b\}$ is in a triple $\{i, 2n + 1 + i, 4n + 2 + i\}$ for some *i* (that is, the pair *a* and *b* appear in a short orbit triple), or (b) otherwise $d \in \{x, y, z\} \in D(v)$ and $\{a, b\} = \{i, x + i, x + y + i\}$ for some *i*. That is, every pair of symbols occurs in at least one triple of *T*. Since |T| = v(v - 1)/, then by Exercise 1.1.4 (S, T) is a Steiner triple system. By construction, (S, T) is cyclic and admits the automorphism $(0, 1, 2, \ldots, v - 1)$.

We leave the proof that a cyclic STS(9) does not exist to Exercise 1.7.A.

Theorem 1.7.6 (continued 2)

Theorem 1.7.6. A cyclic Steiner triple system of order v exists if and only if $v \equiv 1$ or 3 (mod 6) and $v \neq 9$.

Proof (continued). So for any pair of symbols *a* and *b* in $\{0, 1, \ldots, v-1\}$, say a - b = d or b - a = -d where we can assume $1 \le d \le (v-1)/2$ by Note 1.7.A. Then either (a) v = 6n + 3 and d = 2n + 1 in which case $\{a, b\}$ is in a triple $\{i, 2n + 1 + i, 4n + 2 + i\}$ for some *i* (that is, the pair *a* and *b* appear in a short orbit triple), or (b) otherwise $d \in \{x, y, z\} \in D(v)$ and $\{a, b\} = \{i, x + i, x + y + i\}$ for some *i*. That is, every pair of symbols occurs in at least one triple of *T*. Since |T| = v(v - 1)/, then by Exercise 1.1.4 (*S*, *T*) is a Steiner triple system. By construction, (*S*, *T*) is cyclic and admits the automorphism $(0, 1, 2, \ldots, v - 1)$.

We leave the proof that a cyclic STS(9) does not exist to Exercise 1.7.A.