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Chapter 3. Quasigroup Identities and Graph Decompositions
3.1. Quasigroup Identities—Proofs of Theorems
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Lemma 3.1.A

Lemma 3.1.A

Lemma 3.1.A. Let R be an n2 × 3 with the property that each ordered
pair (a, b) satisfies the following: (1) a in the first column and b in the
second column in exactly once (say when c is in the third column), (2) a
in the first column and b in the third column exactly once (say when x is
in the second column), and (3) a in the second column and b in the third
column in exactly once (say when y is in row one). Define a ◦ b = c based
on property (1). Then (Q, ◦) is a quasigroup.

Proof. Let a, b ∈ Q. We have a ◦ b = c if and only if
((a, b), c) := (a, b, c) ∈ R. For every pair of elements a, b ∈ Q, the
equations a ◦ x = b and y ◦ a = b have unique solutions (namely, x and y
where these are determined from the unique triple of type (2) of the form
(a, x , b)) and the unique triple of type (3) of the form (y , a, b) in R
respectively). Therefore, by definition, (Q, ◦) is a quasigroup.
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Lemma 3.1.B

Lemma 3.1.B

Lemma 3.1.B. If R is an n2 × 3 orthogonal array, the for every α ∈ S3 we
have Rα is also an orthogonal array.

Proof. Let (Q, ◦) be the quasigroup equivalent to orthogonal array R.
Then a ◦ b = c if and only if (a, b, c) is a row of R (by the definition of
“orthogonal array”). We need to show that Rα is equivalent to some
quasigroup. Notice that the entries of R and Rα, and the elements of Q
are all the same.

Define binary operation ◦′ on the elements Q as a ◦′ b = c if and only if
(a, b, c) is a row of Rα (since α is a bijection on the rows of R, and the
rows of R are not repeated, then the rows of Rα are not repeated). By the
definition of quasigroup, we need to show that for every pair of entries in
Rα, a, b, the equations a ◦′ x = b and y ◦′ a = b have unique solutions.
Now in (Q, ◦), the equations a ◦ x = b and y ◦ a = b have unique
solutions since (Q, ◦) is a quasigroup. So we relate the equations in ◦′ to
the equations in ◦ using permutations in S3.
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Lemma 3.1.B

Lemma 3.1.B (continued 1)

Proof (continued). Consider what happens when we apply α ∈ S3 to the
position of the variables (first, second, or third position) in the equations
a ◦′ x = b and y ◦′ a = b:

Permutation Permuted Equations
(1)(2)(3) a ◦′ x = b, y ◦′ a = b

(1, 2) x ◦′ a = b, a ◦′ y = b
(1, 3) b ◦′ x = a, b ◦′ a = y
(2, 3) a ◦′ b = x , y ◦′ b = a

(1, 2, 3) b ◦′ a = x , b ◦′ y = a
(1, 3, 2) x ◦′ b = a, a ◦′ b = y

Taking the “variable” always as x and the “constants” as a and b, then
each of the permuted equations is of one of the forms (we take constant a
to the left of b in these forms): x ◦′ a = b, a ◦′ x = b, or a ◦′ b = x . Since
◦′ is a binary operation, every equation of the form a ◦′ b = x has a unique
solution x .
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Lemma 3.1.B

Lemma 3.1.B (continued 2)

Lemma 3.1.B. If R is an n2 × 3 orthogonal array, the for every α ∈ S3 we
have Rα is also an orthogonal array.

Proof (continued). An equation of the form x ◦ a = b has a unique
solution in (Q, ◦), so that (x , a, b) is a row of R exactly once. Since α is a
bijection of the rows of R, then (x , a, b) is a row of Rα exactly once.
Therefore, x ◦′ a = b has a unique solution. Similarly, an equation of the
form a ◦ x = b has a unique solution in (Q, ◦) so that (a, x , b) is a row of
R exactly once, α is a bijection of the rows of R and (x , a, b) is a row of
Rα exactly once, therefore a ◦′ ax = b has a unique solution. That is,
(Q, ◦′) is a quasigroup. Finally, Rα is the orthogonal array equivalent to
this quasigroup, as claimed.
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