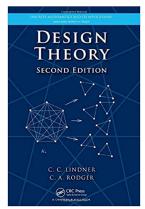
Design Theory

Chapter 8. Intersections of Steiner Triple Systems 8.1. Teirlinck's Algorithm—Proofs of Theorems



2 Theorem 8.1.B. Teirlinck's Algorithm

Theorem 8.1.A. The Reduction Algorithm

Theorem 8.1.A. The Reduction Algorithm. Let (S, T_1) and (S, T_2) be any two STS(n)s and suppose that $\{1, 2, 3\} \in T_1 \cap T_2$ and |S(3)| < n. Then there exists a transposition α such that $T_1 \cap T_2 \alpha \subseteq T_1 \cap T_2$ and $|T_1 \cap T_2 \alpha| < |T_1 \cap T_2|$.

Proof. Let *x* be any element of *S* that does not belong to *S*(3) (such an element exists since *S*(3) < *n*) and let $\alpha = (3, x)$. There are three kinds of triples of elements of set *S*: those containing neither *x* nor 3, those containing both *x* and 3, and those containing exactly one of *x* and 3. First $T_1 \cap T_2 \alpha$ and $T_1 \cap T_2$ contain exactly the same triples that contain neither *x* nor 3 (since these triples are fixed under α). Similarly, $T_1 \cap T_2 \alpha$ contains the triple $\{3, x, a\}$ if $\{3, x, a\} \in T_1 \cap T_2$ (since this triple is also fixed under α).

Theorem 8.1.A. The Reduction Algorithm

Theorem 8.1.A. The Reduction Algorithm. Let (S, T_1) and (S, T_2) be any two STS(n)s and suppose that $\{1, 2, 3\} \in T_1 \cap T_2$ and |S(3)| < n. Then there exists a transposition α such that $T_1 \cap T_2 \alpha \subseteq T_1 \cap T_2$ and $|T_1 \cap T_2 \alpha| < |T_1 \cap T_2|$.

Proof. Let x be any element of S that does not belong to S(3) (such an element exists since S(3) < n and let $\alpha = (3, x)$. There are three kinds of triples of elements of set S: those containing neither x nor 3, those containing both x and 3, and those containing exactly one of x and 3. First $T_1 \cap T_2 \alpha$ and $T_1 \cap T_2$ contain exactly the same triples that contain neither x nor 3 (since these triples are fixed under α). Similarly, $T_1 \cap T_2 \alpha$ contains the triple $\{3, x, a\}$ if $\{3, x, a\} \in T_1 \cap T_2$ (since this triple is also fixed under α). Thus $(T_1 \cap T_2) \setminus I \subseteq T_1 \cap T_2 \alpha$, where I is the set of all triples in $T_1 \cap T_2$ containing exactly one of x and 3. Hence $T_1 \cap T_2 \alpha = ((T_1 \cap T_2) \setminus I) \cup P$, where P is some set of triples containing exactly one of x and 3. ASSUME $P \neq \emptyset$.

Theorem 8.1.A. The Reduction Algorithm

Theorem 8.1.A. The Reduction Algorithm. Let (S, T_1) and (S, T_2) be any two STS(n)s and suppose that $\{1, 2, 3\} \in T_1 \cap T_2$ and |S(3)| < n. Then there exists a transposition α such that $T_1 \cap T_2 \alpha \subseteq T_1 \cap T_2$ and $|T_1 \cap T_2 \alpha| < |T_1 \cap T_2|$.

Proof. Let x be any element of S that does not belong to S(3) (such an element exists since S(3) < n and let $\alpha = (3, x)$. There are three kinds of triples of elements of set S: those containing neither x nor 3, those containing both x and 3, and those containing exactly one of x and 3. First $T_1 \cap T_2 \alpha$ and $T_1 \cap T_2$ contain exactly the same triples that contain neither x nor 3 (since these triples are fixed under α). Similarly, $T_1 \cap T_2 \alpha$ contains the triple $\{3, x, a\}$ if $\{3, x, a\} \in T_1 \cap T_2$ (since this triple is also fixed under α). Thus $(T_1 \cap T_2) \setminus I \subseteq T_1 \cap T_2 \alpha$, where I is the set of all triples in $T_1 \cap T_2$ containing exactly one of x and 3. Hence $T_1 \cap T_2 \alpha = ((T_1 \cap T_2) \setminus I) \cup P$, where P is some set of triples containing exactly one of x and 3. ASSUME $P \neq \emptyset$.

Theorem 8.1.A. The Reduction Algorithm (continued 1)

Proof (continued). ASSUME $P \neq \emptyset$. Then *P* either contains a triple containing *x* and not 3, or a triple containing 3 and not *x*. We consider these two cases.

(i) Consider the case where $\{x, a, b\} \in P$. Then $\{x, a, b\} \in T_1 \cap T_2\alpha$ and so $\{3, a, b\} \in T_2$ (since $\{3, a, b\}\alpha = \{3, a, b\}(3, x) = \{x, a, b\}$). Also $\{x, a, b\} \in T_1$. But $\{x, a, b\} \in T_1$ and $\{3, a, b\} \in T_2 \setminus \{1, 2, 3\}$ means that $x \in S(3)$ (by the definition of A(3)). But x was chosen such that $x \notin S(3)$, a CONTRADICTION. So the assumption that $\{x, a, b\} \in P$ is false and $\{x, a, b\} \notin P$.

Theorem 8.1.A. The Reduction Algorithm (continued 1)

Proof (continued). ASSUME $P \neq \emptyset$. Then *P* either contains a triple containing *x* and not 3, or a triple containing 3 and not *x*. We consider these two cases.

(i) Consider the case where $\{x, a, b\} \in P$. Then $\{x, a, b\} \in T_1 \cap T_2\alpha$ and so $\{3, a, b\} \in T_2$ (since $\{3, a, b\}\alpha = \{3, a, b\}(3, x) = \{x, a, b\}$). Also $\{x, a, b\} \in T_1$. But $\{x, a, b\} \in T_1$ and $\{3, a, b\} \in T_2 \setminus \{1, 2, 3\}$ means that $x \in S(3)$ (by the definition of A(3)). But x was chosen such that $x \notin S(3)$, a CONTRADICTION. So the assumption that $\{x, a, b\} \in P$ is false and $\{x, a, b\} \notin P$.

(ii) Consider the case where $\{3, a, b\} \in P$. Then $\{3, a, b\} \in T_1 \cap T_2\alpha$ and so $\{x, a, b\} \in T_2$ (since $\{x, a, b\}\alpha = \{x, a, b\}(3, x) = \{3, a, b\}$). Also $\{3, a, b\} \in T_1$. But $\{3, a, b\} \in T_1$ and $\{x, a, b\} \in T_2 \setminus \{1, 2, 3\}$ means that $x \in S(3)$ (by the definition of B(3)). But x was chosen such that $x \notin S(3)$, a CONTRADICTION. So the assumption that $\{3, a, b\} \in P$ is false and $\{3, a, b\} \notin P$.

Theorem 8.1.A. The Reduction Algorithm (continued 1)

Proof (continued). ASSUME $P \neq \emptyset$. Then *P* either contains a triple containing *x* and not 3, or a triple containing 3 and not *x*. We consider these two cases.

(i) Consider the case where $\{x, a, b\} \in P$. Then $\{x, a, b\} \in T_1 \cap T_2\alpha$ and so $\{3, a, b\} \in T_2$ (since $\{3, a, b\}\alpha = \{3, a, b\}(3, x) = \{x, a, b\}$). Also $\{x, a, b\} \in T_1$. But $\{x, a, b\} \in T_1$ and $\{3, a, b\} \in T_2 \setminus \{1, 2, 3\}$ means that $x \in S(3)$ (by the definition of A(3)). But x was chosen such that $x \notin S(3)$, a CONTRADICTION. So the assumption that $\{x, a, b\} \in P$ is false and $\{x, a, b\} \notin P$.

(ii) Consider the case where $\{3, a, b\} \in P$. Then $\{3, a, b\} \in T_1 \cap T_2 \alpha$ and so $\{x, a, b\} \in T_2$ (since $\{x, a, b\}\alpha = \{x, a, b\}(3, x) = \{3, a, b\}$). Also $\{3, a, b\} \in T_1$. But $\{3, a, b\} \in T_1$ and $\{x, a, b\} \in T_2 \setminus \{1, 2, 3\}$ means that $x \in S(3)$ (by the definition of B(3)). But x was chosen such that $x \notin S(3)$, a CONTRADICTION. So the assumption that $\{3, a, b\} \in P$ is false and $\{3, a, b\} \notin P$.

Theorem 8.1.A. The Reduction Algorithm (continued 2)

Theorem 8.1.A. The Reduction Algorithm. Let (S, T_1) and (S, T_2) be any two STS(n)s and suppose that $\{1, 2, 3\} \in T_1 \cap T_2$ and |S(3)| < n. Then there exists a transposition α such that $T_1 \cap T_2 \alpha \subseteq T_1 \cap T_2$ and $|T_1 \cap T_2 \alpha| < |T_1 \cap T_2|$.

Proof (continued). Therefore $P = \emptyset$ and $T_1 \cap T_2 \alpha = ((T_1 \cap T_2) \setminus I) \cup P = (T_1 \cap T_2) \setminus I$. Since $\{1, 2, 3\} \in T_1 \cap T_2$ (by hypothesis) then $\{1, 2, 3\} \in I$ and $|I| \ge 1$. Hence, $|T_1 \cap T_2 \alpha| < |T_1 \cap T_2|$, as claimed.

Theorem 8.1.b. Teirlinck's Algorithm

Theorem 8.1.B. Teirlinck's Algorithm. Let (S, T_1) and (S, T_2) be any two STS(n)s and suppose that $\{1, 2, 3\} \in T_1 \cap T_2$ and S(3) = S. Then there exists a transposition α such that $T_1 \cap T_2 \alpha$ contains a triple t and an element $e \in t$ such that |S(e)| < n (where this spread is with respect to triple t) and $|T_1 \cap T_1 \alpha| \le |T_1 \cap T_2|$.

Proof. We number the steps in the proof to match up with image of Teirlink's Algorithm on page 173 of the textbook. (1) We have $\{1,2,3\} \in T_1 \cap T_2$ by hypothesis. (2) Let $\{3, x, y\}$ be a triple in T_2 other than the triple $\{1,2,3\}$ (so that neither x nor y is 1 or 2). (3) There is a unique triple in T_1 which contains both x and y (by the definition of Steiner triple system), say $\{x, y, c\}$. Then $c \in A(3)$. Since S(3) = S then $\{1,2,3\}$, A(3), and B(3) are pairwise disjoint by Note 8.1.A, so that $c \notin \{1,2,3\}$. (4) There is a unique triple in T_2 which contains both 3 and c, say $\{3, c, d\}$.

Theorem 8.1.b. Teirlinck's Algorithm

Theorem 8.1.B. Teirlinck's Algorithm. Let (S, T_1) and (S, T_2) be any two STS(n)s and suppose that $\{1, 2, 3\} \in T_1 \cap T_2$ and S(3) = S. Then there exists a transposition α such that $T_1 \cap T_2 \alpha$ contains a triple t and an element $e \in t$ such that |S(e)| < n (where this spread is with respect to triple t) and $|T_1 \cap T_1 \alpha| \le |T_1 \cap T_2|$.

Proof. We number the steps in the proof to match up with image of Teirlink's Algorithm on page 173 of the textbook. (1) We have $\{1,2,3\} \in T_1 \cap T_2$ by hypothesis. (2) Let $\{3, x, y\}$ be a triple in T_2 other than the triple $\{1,2,3\}$ (so that neither x nor y is 1 or 2). (3) There is a unique triple in T_1 which contains both x and y (by the definition of Steiner triple system), say $\{x, y, c\}$. Then $c \in A(3)$. Since S(3) = S then $\{1,2,3\}$, A(3), and B(3) are pairwise disjoint by Note 8.1.A, so that $c \notin \{1,2,3\}$. (4) There is a unique triple in T_2 which contains both 3 and c, say $\{3, c, d\}$.

Theorem 8.1.b. Teirlinck's Algorithm (continued)

Proof. (5) There is a unique triple in T_1 which contains both c and d, say $\{c, d, e\}$. Then $e \in A(3)$. Again, since S(3) = S then $\{1, 2, 3\}$, A(3), and B(3) are pairwise disjoint by Note 8.1.A, so that $e \notin \{1, 2, 3\}$. (6) Let α be the transposition (3, e).

We now consider the two STSs (S, T_1) and $(S, T_2\alpha)$. Set of triples $T_2\alpha$ contains $\{3, c, d\}\alpha = \{c, d, e\}$ and so $\{c, d, e\} \in T_1 \cap T_2\alpha$; set $t = \{c, d, e\}$. Now $\{3, x, y\} \in T_2$ by (2) so $\{e, x, y\} \in T_2\alpha$, and $\{c, x, y\} \in T_1$ by (3). So with respect to $t = \{c, d, e\}$ we have $c \in A(e)$. But then $c \in \{c, d, e\}$ and $c \in A(e)$, so by Note 8.1.A we have that (with respect to t) $S(e) \neq S$ and hence S(e) < n, as claimed. It is to be shown in Exercise 8.1.14 that $|T_1 \cap T_2\alpha| \leq |T_1 \cap T_2|$, as claimed.

Theorem 8.1.b. Teirlinck's Algorithm (continued)

Proof. (5) There is a unique triple in T_1 which contains both c and d, say $\{c, d, e\}$. Then $e \in A(3)$. Again, since S(3) = S then $\{1, 2, 3\}$, A(3), and B(3) are pairwise disjoint by Note 8.1.A, so that $e \notin \{1, 2, 3\}$. (6) Let α be the transposition (3, e).

We now consider the two STSs (S, T_1) and $(S, T_2\alpha)$. Set of triples $T_2\alpha$ contains $\{3, c, d\}\alpha = \{c, d, e\}$ and so $\{c, d, e\} \in T_1 \cap T_2\alpha$; set $t = \{c, d, e\}$. Now $\{3, x, y\} \in T_2$ by (2) so $\{e, x, y\} \in T_2\alpha$, and $\{c, x, y\} \in T_1$ by (3). So with respect to $t = \{c, d, e\}$ we have $c \in A(e)$. But then $c \in \{c, d, e\}$ and $c \in A(e)$, so by Note 8.1.A we have that (with respect to t) $S(e) \neq S$ and hence S(e) < n, as claimed. It is to be shown in Exercise 8.1.14 that $|T_1 \cap T_2\alpha| \le |T_1 \cap T_2|$, as claimed.