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Theorem DPC.A. Directed Triple Packing of D,, v = 8 (mod 12)

Theorem DPC.A (continued)

Theorem DPC.A. A maximum packing of D, with directed/transitive
triples satisfies:

1. if v=0o0r1 (mod 3) then L = &, and
2. if v=2 (mod 3) then L = D;.

Proof for v = 8 (mod 12), continued. ...
{(0,x,5t+4)p, (0,y,7t+5)p}U{(0,3t+2—i,3t+3+i)p | i = 0,1,...,t}
U{(0,5t+3—1i,5t+5+1)p, (0,7t +6+i,7t+4—i)p | i=0,1,...,t—1}

U{(0,9t +6+i,9t+5—i)p|i=0,1,...,t—1}.

These triples, along with their images under the powers of the permutation
(x)(¥)(0,1,...,12t 4+ 5), form a packing of D, with the leave L = D,

where A(L) = {(x,), (v, x)}. -
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Theorem DPC.A. Directed Triple Packing of D,, v = 8 (mod 12)

Theorem DPC.A

Theorem DPC.A. A maximum packing of D, with directed/transitive
triples satisfies:

1. if v=0o0r1 (mod 3) then L = &, and
2. if v=2 (mod 3) then L = D5.

Proof for v = 8 (mod 12). First, for v = 2 (mod 3) we have that the arc
set A(D, ) satisfies |A(D,)| = v(v — 1) =2 (mod 3), so a packing with a
leave L consisting of two arcs would be maximal.

Case 3. Suppose v =8 (mod 12), say v = 12t + 8. Let
$={0,1,2,...,v—3,x,y} ={0,1,2,...,12t + 2, x, y}. Consider the
collection of directed/transitive triples T

{(0,x,5t+4)p, (0,y,7t+5)p}U{(0,3t+2—i,3t+3+i)p | i =0,1,...,t}
u{(0,5t+3—1i,5t+5+1i)p,(0,7t+6+i,7t+4—i)p | i=0,1,...,t—1}
u{(0,9t+6+i,9t+5—i)p | i=0,1,...,t —1}.
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[Theorem DPC.D. Mendelsohn Triple Covering Dy, v = 2 (mod 6)

Theorem DPC.D

Theorem DPC.D. A minimum covering of D, with Mendelsohn triples
satisfies:

1. ifv=0or1(mod3), v+#6, then P =g,
2. if v==6 then P = (3, and

3. if v =2 (mod 3) then P has four arcs and may be two
disjoint copies of D,, any orientation of a 4-cycle, or two
copies of D> which share a single vertex.

Proof for v =2 (mod 6). First, for v =2 (mod 3) we have that the arc
set A(D,) satisfies |[A(D,)| = v(v—1) = 2 (mod 3). The total degree (i.e.,
the in-degree plus the out-degree) of each vertex of D, is 2(v — 1) and the
total degree of each vertex of a Mendelsohn triple is 2. So any covering of
D,, with Mendelsohn triples will have a padding P with each vertex of even
total-degree. So a covering of D, cannot have a padding that contains a
single arc. Hence a covering with |A(P)| = 4 would be minimal.
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[Theorem DPC.D. Mendelsohn Triple Covering Dy, v = 2 (mod 6)

Theorem DPC.D (continued 1)

Proof for v =2 (mod 6), continued. Case la. Suppose v =8 and P is
two disjoint copies of D,. Let S ={0,1,2,,3,4,5,6,7}. Consider the
collection of Mendelsohn triples T:

(Oa 55 4)/\//’ (07 47 5)/\//7 (Oa 1a 4)/\//7 (Oa 45 1)/\//7 (17 57 2)/\/’7 (15 55 7)/\//’ (17 37 5)/\//’
(1a 65 5)/\/7’ (47 67 7)M7 (45 35 6)/\/77 (4a 75 2)/\/77 (47 27 3)M7 (Oa 75 6)/\/7’ (07 67 3)/\/77

(07 277)1\/77 (07 37 2)/\//’ (17 27 6)/\//7 (27 576)1\/77 (17 77 3)/\//’ (37 77 5)

Then (S, T, P) is a maximal covering of Dg with padding P, two disjoint
copies of D,, where A(P) = {(0,4),(4,0),(1,5),(5,1)}.

Case 1b. Suppose v =2 (mod 6), v # 8, say v = 6t + 2 where t > 2, P
is two disjoint copies of D,. Let

$={0,1,...,v—06,a,b,c,d,e} ={0,1,...,6t —4,a,b,c,d,e}.
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[Theorem DPC.D. Mendelsohn Triple Covering Dy, v = 2 (mod 6)

Theorem DPC.D (continued 2)

Proof for v = 2 (mod 6), continued. Consider the collection of
Mendelsohn triples:

{(0,2+4i,3t—1—y|i=0,1,...,t—2}

u{(0,4t+i,t—1—i)y|i=0,1,...,t—3}
u{(0,1, a)m, (0,4t —3, b)m, (0,4t —2,¢c)pm, (0,4t —1,d)m, (0,6t —4, €)M}

U{(a, b, e)m, (a,e,b)m, (a,e,c)m, (a,d, e)m,

(a,c,d)m, (c,e,d)m, (b, c,d)m, (b, d, c)m}-

These triples, along with their images under the powers of the permutation
(0,1,...,6t —4)(a)(b)(c)(d)(e), form a covering of D, with the padding
P, two disjoint copies of D,, where

A(P) ={(a,e),(e,a),(d,c),(c,d)}. O
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