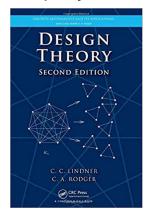
Design Theory

Supplement. Packings and Coverings for Mendelsohn and Directed **Triple Systems**



Design Theory

May 24, 2022

Design Theory

May 24, 2022 3 / 7

Theorem DPC.A (continued)

Theorem DPC.A. A maximum packing of D_{ν} with directed/transitive triples satisfies:

- 1. if $v \equiv 0$ or 1 (mod 3) then $L = \emptyset$, and
- 2. if $v \equiv 2 \pmod{3}$ then $L = D_2$.

Proof for $v \equiv 8 \pmod{12}$, continued. ...

$$\{(0,x,5t+4)_D,(0,y,7t+5)_D\}\cup\{(0,3t+2-i,3t+3+i)_D\mid i=0,1,\ldots,t\}$$

$$\bigcup \{ (0,5t+3-i,5t+5+i)_D, (0,7t+6+i,7t+4-i)_D \mid i=0,1,\ldots,t-1 \} \\
\bigcup \{ (0,9t+6+i,9t+5-i)_D \mid i=0,1,\ldots,t-1 \}.$$

These triples, along with their images under the powers of the permutation $(x)(y)(0,1,\ldots,12t+5)$, form a packing of D_v with the leave $L=D_2$ where $A(L) = \{(x, y), (y, x)\}.$

Theorem DPC.A

Theorem DPC.A. A maximum packing of D_v with directed/transitive triples satisfies:

- 1. if $v \equiv 0$ or 1 (mod 3) then $L = \emptyset$, and
- 2. if $v \equiv 2 \pmod{3}$ then $L = D_2$.

Proof for $v \equiv 8 \pmod{12}$. First, for $v \equiv 2 \pmod{3}$ we have that the arc set $A(D_v)$ satisfies $|A(D_v)| = v(v-1) \equiv 2 \pmod{3}$, so a packing with a leave L consisting of two arcs would be maximal.

Case 3. Suppose $v \equiv 8 \pmod{12}$, say v = 12t + 8. Let $S = \{0, 1, 2, \dots, v - 3, x, y\} = \{0, 1, 2, \dots, 12t + 2, x, y\}$. Consider the collection of directed/transitive triples T:

$$\{(0, x, 5t+4)_D, (0, y, 7t+5)_D\} \cup \{(0, 3t+2-i, 3t+3+i)_D \mid i = 0, 1, \dots, t\}$$

$$\cup \{(0, 5t+3-i, 5t+5+i)_D, (0, 7t+6+i, 7t+4-i)_D \mid i = 0, 1, \dots, t-1\}$$

$$\cup \{(0, 9t+6+i, 9t+5-i)_D \mid i = 0, 1, \dots, t-1\}.$$

Theorem DPC.D

Theorem DPC.D. A minimum covering of D_{ν} with Mendelsohn triples satisfies:

- 1. if $v \equiv 0$ or 1 (mod 3), $v \neq 6$, then $P = \emptyset$.
- 2. if v = 6 then $P = C_3$, and
- 3. if $v \equiv 2 \pmod{3}$ then P has four arcs and may be two disjoint copies of D_2 , any orientation of a 4-cycle, or two copies of D_2 which share a single vertex.

Proof for $v \equiv 2 \pmod{6}$. First, for $v \equiv 2 \pmod{3}$ we have that the arc set $A(D_v)$ satisfies $|A(D_v)| = v(v-1) \equiv 2 \pmod{3}$. The total degree (i.e., the in-degree plus the out-degree) of each vertex of D_v is 2(v-1) and the total degree of each vertex of a Mendelsohn triple is 2. So any covering of D_{ν} with Mendelsohn triples will have a padding P with each vertex of even total-degree. So a covering of D_{ν} cannot have a padding that contains a single arc. Hence a covering with |A(P)| = 4 would be minimal.

Theorem DPC.D (continued 1)

Proof for $v \equiv 2$ (mod 6), continued. Case 1a. Suppose v = 8 and P is two disjoint copies of D_2 . Let $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$. Consider the collection of Mendelsohn triples T:

$$(0,5,4)_M,(0,4,5)_M,(0,1,4)_M,(0,4,1)_M,(1,5,2)_M,(1,5,7)_M,(1,3,5)_M,$$

$$(1,6,5)_M, (4,6,7)_M, (4,3,6)_M, (4,7,2)_M, (4,2,3)_M, (0,7,6)_M, (0,6,3)_M,$$

 $(0,2,7)_M, (0,3,2)_M, (1,2,6)_M, (2,5,6)_M, (1,7,3)_M, (3,7,5).$

Then (S, T, P) is a maximal covering of D_8 with padding P, two disjoint copies of D_2 , where $A(P) = \{(0,4), (4,0), (1,5), (5,1)\}.$

Case 1b. Suppose $v \equiv 2 \pmod{6}$, $v \neq 8$, say v = 6t + 2 where $t \geq 2$, P is two disjoint copies of D_2 . Let

$$S = \{0, 1, \dots, v - 6, a, b, c, d, e\} = \{0, 1, \dots, 6t - 4, a, b, c, d, e\}.$$

Design Theory

heorem DPC.D. Mendelsohn Triple Covering D_v , $v \equiv 2 \pmod{6}$

Theorem DPC.D (continued 2)

Proof for $v \equiv 2 \pmod{6}$, **continued.** Consider the collection of Mendelsohn triples:

$$\{(0,2+i,3t-1-i)_{M} \mid i=0,1,\ldots,t-2\}$$

$$\cup \{(0,4t+i,t-1-i)_{M} \mid i=0,1,\ldots,t-3\}$$

$$\cup \{(0,1,a)_{M},(0,4t-3,b)_{M},(0,4t-2,c)_{M},(0,4t-1,d)_{M},(0,6t-4,e)_{M}\}$$

$$\cup \{(a,b,e)_{M},(a,e,b)_{M},(a,e,c)_{M},(a,d,e)_{M},(a,c,d)_{M},(c,e,d)_{M},(b,c,d)_{M},(b,d,c)_{M}\}.$$

These triples, along with their images under the powers of the permutation $(0,1,\ldots,6t-4)(a)(b)(c)(d)(e)$, form a covering of D_v with the padding P, two disjoint copies of D_2 , where

$$A(P) = \{(a, e), (e, a), (d, c), (c, d)\}.$$

() Design Theory May 24, 2022 7 / 7