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Theorem DPC.A. Directed Triple Packing of Dv , v ≡ 8 (mod 12)

Theorem DPC.A

Theorem DPC.A. A maximum packing of Dv with directed/transitive
triples satisfies:

1. if v ≡ 0 or 1 (mod 3) then L = ∅, and

2. if v ≡ 2 (mod 3) then L = D2.

Proof for v ≡ 8 (mod 12). First, for v ≡ 2 (mod 3) we have that the arc
set A(Dv ) satisfies |A(Dv )| = v(v − 1) ≡ 2 (mod 3), so a packing with a
leave L consisting of two arcs would be maximal.

Case 3. Suppose v ≡ 8 (mod 12), say v = 12t + 8. Let
S = {0, 1, 2, . . . , v − 3, x , y} = {0, 1, 2, . . . , 12t + 2, x , y}. Consider the
collection of directed/transitive triples T :

{(0, x , 5t+4)D , (0, y , 7t+5)D}∪{(0, 3t+2−i , 3t+3+i)D | i = 0, 1, . . . , t}

∪{(0, 5t +3− i , 5t +5+ i)D , (0, 7t +6+ i , 7t +4− i)D | i = 0, 1, . . . , t−1}

∪{(0, 9t + 6 + i , 9t + 5− i)D | i = 0, 1, . . . , t − 1}.
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Theorem DPC.A. Directed Triple Packing of Dv , v ≡ 8 (mod 12)

Theorem DPC.A (continued)

Theorem DPC.A. A maximum packing of Dv with directed/transitive
triples satisfies:

1. if v ≡ 0 or 1 (mod 3) then L = ∅, and

2. if v ≡ 2 (mod 3) then L = D2.

Proof for v ≡ 8 (mod 12), continued. . . .

{(0, x , 5t+4)D , (0, y , 7t+5)D}∪{(0, 3t+2−i , 3t+3+i)D | i = 0, 1, . . . , t}

∪{(0, 5t +3− i , 5t +5+ i)D , (0, 7t +6+ i , 7t +4− i)D | i = 0, 1, . . . , t−1}

∪{(0, 9t + 6 + i , 9t + 5− i)D | i = 0, 1, . . . , t − 1}.

These triples, along with their images under the powers of the permutation
(x)(y)(0, 1, . . . , 12t + 5), form a packing of Dv with the leave L = D2

where A(L) = {(x , y), (y , x)}.
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Theorem DPC.D. Mendelsohn Triple Covering Dv , v ≡ 2 (mod 6)

Theorem DPC.D

Theorem DPC.D. A minimum covering of Dv with Mendelsohn triples
satisfies:

1. if v ≡ 0 or 1 (mod 3), v 6= 6, then P = ∅,

2. if v = 6 then P = C3, and

3. if v ≡ 2 (mod 3) then P has four arcs and may be two
disjoint copies of D2, any orientation of a 4-cycle, or two
copies of D2 which share a single vertex.

Proof for v ≡ 2 (mod 6). First, for v ≡ 2 (mod 3) we have that the arc
set A(Dv ) satisfies |A(Dv )| = v(v −1) ≡ 2 (mod 3). The total degree (i.e.,
the in-degree plus the out-degree) of each vertex of Dv is 2(v − 1) and the
total degree of each vertex of a Mendelsohn triple is 2. So any covering of
Dv with Mendelsohn triples will have a padding P with each vertex of even
total-degree. So a covering of Dv cannot have a padding that contains a
single arc. Hence a covering with |A(P)| = 4 would be minimal.
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Theorem DPC.D. Mendelsohn Triple Covering Dv , v ≡ 2 (mod 6)

Theorem DPC.D (continued 1)

Proof for v ≡ 2 (mod 6), continued. Case 1a. Suppose v = 8 and P is
two disjoint copies of D2. Let S = {0, 1, 2, , 3, 4, 5, 6, 7}. Consider the
collection of Mendelsohn triples T :

(0, 5, 4)M , (0, 4, 5)M , (0, 1, 4)M , (0, 4, 1)M , (1, 5, 2)M , (1, 5, 7)M , (1, 3, 5)M ,

(1, 6, 5)M , (4, 6, 7)M , (4, 3, 6)M , (4, 7, 2)M , (4, 2, 3)M , (0, 7, 6)M , (0, 6, 3)M ,

(0, 2, 7)M , (0, 3, 2)M , (1, 2, 6)M , (2, 5, 6)M , (1, 7, 3)M , (3, 7, 5).

Then (S ,T ,P) is a maximal covering of D8 with padding P, two disjoint
copies of D2, where A(P) = {(0, 4), (4, 0), (1, 5), (5, 1)}.

Case 1b. Suppose v ≡ 2 (mod 6), v 6= 8, say v = 6t + 2 where t ≥ 2, P
is two disjoint copies of D2. Let

S = {0, 1, . . . , v − 6, a, b, c , d , e} = {0, 1, . . . , 6t − 4, a, b, c , d , e}.
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Theorem DPC.D. Mendelsohn Triple Covering Dv , v ≡ 2 (mod 6)

Theorem DPC.D (continued 2)

Proof for v ≡ 2 (mod 6), continued. Consider the collection of
Mendelsohn triples:

{(0, 2 + i , 3t − 1− i)M | i = 0, 1, . . . , t − 2}

∪{(0, 4t + i , t − 1− i)M | i = 0, 1, . . . , t − 3}

∪{(0, 1, a)M , (0, 4t−3, b)M , (0, 4t−2, c)M , (0, 4t−1, d)M , (0, 6t−4, e)M}

∪{(a, b, e)M , (a, e, b)M , (a, e, c)M , (a, d , e)M ,

(a, c , d)M , (c , e, d)M , (b, c , d)M , (b, d , c)M}.

These triples, along with their images under the powers of the permutation
(0, 1, . . . , 6t − 4)(a)(b)(c)(d)(e), form a covering of Dv with the padding
P, two disjoint copies of D2, where
A(P) = {(a, e), (e, a), (d , c), (c , d)}.
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