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1.2. v ≡ 3 (mod 6): The Bose Construction

Note. In this section, we show that the condition v ≡ 3 (mod 6) is sufficient

for the existence of a Steiner triple system of order v. The method of proof is

due to Raj Chandra Bose (June 19, 1901–October 31, 1987). Bose was born in

India where he was educated and worked for the Indian Statistical Institute. He

published several papers on statistics and block designs (including the paper of

interest in this section) while working for the Indian Statistical Institute. He was

chair of the Department of Statistics at the University of Calcutta from 1945 to

1947. He kept a busy work schedule and, in spite of the fact that he had published

many well-received research papers, he did not get his doctorate until 1947 (after

Ronald A. Fisher examined Bose’s research and supported his candidacy). Starting

in 1947, Bose spent time at several U.S. universities, including Virginia Polytechnic

Institute at Blacksburg and the University of California in Berkeley. In 1949 he

took a professorship at the university of North Carolina at Chapel Hill where he

stayed until his first retirement in 1971. He next took a position at Colorado

State University and was there until his second retirement in 1980. Bose made

contributions to statistics, coding theory, and combinatorics. In his later years,

his interests related to the interconnections between the structure of designs and

graphs. This biographical information and the image below are from the MacTutor

History of Mathematics Archive webpage on Bose (accessed 5/9/2022).

https://mathshistory.st-andrews.ac.uk/Biographies/Bose_Raj/
https://mathshistory.st-andrews.ac.uk/Biographies/Bose_Raj/


1.2. v ≡ 3 (mod 6): The Bose Construction 2

Raj Chandra Bose (June 19, 1901–October 31, 1987)

Note. The results of this section appear in Bose’s “On the Construction of Bal-

anced Incomplete Block Designs,” Annals of Eugenics, 9, 353–399 (1939). A copy

of the paper is available online in the Annals of Human Genetics webpage (ac-

cessed 5/9/2022). Of course that journal title “Annals of Eugenics” jumps out

at one! The term “eugenics” was coined by Francis Galton in 1883 (well before

the development of the science of genetics). The idea was that “desirable” human

traits were hereditary, and it discounted the impact of environmental factors (such

as access to resources). The journal Annals of Eugenics was established in 1925

by Karl Pearson who is credited with establishing the discipline of mathematical

statistics (but it seems that he held beliefs in line with some of the darker elements

of eugenics). Pearson’s involvement gave the journal an interest in biostatistics

and mathematical statistics. Ronald Fisher became editor in 1934 and the focus of

the journal moved more to traditional genetics and mathematical statistics. Many

https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1469-1809.1939.tb02219.x
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of the concepts of eugenics (and “social Darwinism,” an idea unrelated to Charles

Darwin’s ideas of biological speciation) were attractive to early 20th century racists

(sadly, some of the ideas persist up to today). Eugenics has been described as “sci-

entific racism.” Of course, it met its nightmarish climax in Nazi Germany in the

1930s and 1940s. Following the second world war, the term “eugenics” was dropped

from use almost universally. The Annals of Eugenics changed its name to Annals

of Human Genetics in 1954. This historical information is largely based on the

Wikipedia pages on eugenics, Karl Pearson, and Annals of Human Genetics (all

accessed 5/9/2022). If you follow the link to Bose’s 1939 paper given above, you

will find that a statement is attached that includes the following:

The work of eugenicists was often pervaded by prejudice against racial,

ethnic and disabled groups. Publication of this material online is for

scholarly research purposes is not an endorsement or promotion of the

views expressed in any of these articles or eugenics in general.

Some of the early mathematical models in population genetics were published in

the journal. For example, J.B.S. Haldane and Ronald Fisher also published papers

in the issue that contains Bose’s paper. It is not surprising that a paper related to

experimental design would appear in such a journal (especially given the involve-

ment of R. A. Fisher). Anyhow, we move on from this discussion and now turn our

attention to some necessary definitions in the explanation of Bose’s construction.

Definition. A latin square of order n is an n×n array, each cell of which contains

exactly one of the symbols in {1, 2, . . . , n}, such that each row and each column of

the array contains each of the symbols in {1, 2, . . . , n} exactly once. We refer to

https://en.wikipedia.org/wiki/Eugenics
https://en.wikipedia.org/wiki/Karl_Pearson
https://en.wikipedia.org/wiki/Annals_of_Human_Genetics
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the entry in row i and column j as being in cell (i, j). A quasigroup of order n is

a pair (Q, ◦) where Q is a set of size n and “◦” is a binary operation on Q such

that for every pair of elements a, b ∈ Q, the equations a ◦ x = b and y ◦ a = b have

unique solutions.

Note. In the study of groups, such as in Modern Algebra 1 (MATH 5410), we

always consider associative binary operations; see my online notes for this class

on I.1. Semigroups, Monoids, and Groups (notice Definition I.1.1). This is not

required in a quasigroup, so this gives us a genuinely new structure. Our goals are

different here from those in group theory, since our interests lie in combinatorial

properties of quasigroups and not in their algebraic properties. The “uniqueness”

condition of a quasigroup and the “exactly one” condition of a latin square implies

that there is little difference between a quasigroup and a latin square. In fact,

Lindner and Rodger state (see page 4): “As far as we are concerned a quasigroup

is just a latin square with a headline and a sideline.”

Example 1.2.1(c). Here we have a latin square of order 3 (left) and a quasigroup

of order 3 (right):

1 2 3

3 1 2

2 3 1

◦ 1 2 3

1 1 2 3

2 3 1 2

3 2 3 1

https://faculty.etsu.edu/gardnerr/5410/notes/I-1.pdf
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Definition. A latin square is idempotent is cell (i, i) contains symbol i for 1 ≤ i ≤

n. A latin square is commutative if sells (i, j) and (j, i) contain the same symbol

for all 1 ≤ i, j ≤ n.

Example 1.2.2. Here we have a latin squares of orders 3 and 5 which are both

idempotent and commutative:

1 3 2

3 2 1

2 1 3

1 4 2 5 3

4 2 5 3 1

2 5 3 1 4

5 3 1 4 2

3 1 4 2 5

Notice that the commutivity is easily recognized by considering the symmetry of

the array with respect to the main diagonal.

Note. We need idempotent commutative quasigroups of order 2n+1 for each n ∈ N

(here, N represents the natural numbers {1, 2, 3, . . .}). In Exercise 1.2.3(a,iii) it is

to be shown that such quasigroups exist by rearranging the Cayley table (i.e., the

addition table) for the additive group Z2n+1 of integers modulo 2n + 1. With these

structures known to exist, we can now present the Bose construction. We argue

symbolically, but give illustrations from the text book to enhance the the ideas;

the authors comment in the Preface (see page ix): “The figures describing the

constructions in this text go a long way to helping students understand and enjoy

this branch of mathematics, and should be used at ALL opportunities.”
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Note. We start by describing the Bose construction. Let v = 6n + 3 where

n ∈ N. Let (Q, ◦) be an idempotent commutative quasigroup of order 2n + 1,

where Q = {1, 2, . . . , 2n + 1} (which is known to exist by Exercise 1.2.3(a,iii)). Let

set S be the Cartesian product S = Q × {1, 2, 3}. We now consider “types” of

triples. Define set T that contains the following triples of elements of S:

Type 1: For 1 ≤ i ≤ 2n + 1 we have the “Type 1” triples {(i, 1), (i, 2), (i, 3)} ∈ T .

Type 2: For 1 ≤ i < j ≤ 2n+1 we have the “Type 2” triples {(i, 1), (j, 1), (i◦j, 2)},

{(i, 2), (j, 2), (i ◦ j, 3)}, {(i, 3), (j, 3), (i ◦ j, 1)} ∈ T .

We’ll prove below that (S, T ) is a Steiner triple system of order 6n + 3.
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Notice that |S| = 6n + 3 and that T contains triples of S. There are 2n + 1 Type

1 triples and 3

(
2n + 1

2

)
= 3n(2n + 1) Type 2 triples. In the proof, we need to

establish that each pair of elements of S occur in exactly one triple.

Theorem 1.2.A. A Steiner triple system of all orders v ≡ 3 (mod 6) exist.

Example 1.2.4. We now illustrate the Bose construction to construct a Steiner

triple system of order 9. We need a idempotent commutative quasigroup of order

3. We use:

◦ 1 2 3

1 1 3 2

2 3 2 1

3 2 1 3

Let S = {1, 2, 3} × {1, 2, 3}. Then |S| = 9 as needed. The triples in set T are:

Type 1: {(1, 1), (1, 2), (1, 3)}, {(2, 1), (2, 2), (2, 3)}, {(3, 1), (3, 2), (3, 3)},

Type 2: i = 1, j = 2

{(1, 1), (2, 1), (1 ◦ 2 = 3, 2)}

{(1, 2), (2, 2), (1 ◦ 2 = 3, 3)}

{(1, 3), (2, 3), (1 ◦ 2 = 3, 1)}

i = 1, j = 3

{(1, 1), (3, 1), (1 ◦ 3 = 2, 2)}

{(1, 2), (3, 2), (1 ◦ 3 = 2, 3)}

{(1, 3), (3, 3), (1 ◦ 3 = 2, 1)}

i = 2, j = 3

{(2, 1), (3, 1), (2 ◦ 3 = 1, 2)}

{(2, 2), (3, 2), (2 ◦ 3 = 1, 3)}

{(2, 3), (3, 3), (2 ◦ 3 = 1, 1)}
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Example 1.2.5 (modified). We now consider some properties of the Bose con-

struction when used to make a Steiner triple system of order 15. We need a idempo-

tent commutative quasigroup of order 5. We create one based on Z5, as in Exercise

1.2.3(a,iii). We have the Cayley table for Z5 (below left), marginal entries changed

to match the diagonal entries(below center; there is no algebraic structure to pre-

serve here), and then the renaming of the symbols as 0 7→ 1, 1 7→ 4, 2 7→ 2, 3 7→ 5,

and 4 7→ 3 to get a quasigroup (Q, ◦) with diagonal entries 1, 2, 3, 4, 5 (in order),

though it differs from the one in the book’s Example 1.2.5.

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

◦ 0 2 4 1 3

0 0 1 2 3 4

2 1 2 3 4 0

4 2 3 4 0 1

1 3 4 0 1 2

3 4 0 1 2 3

◦ 1 2 3 4 5

1 1 4 2 5 3

2 4 2 5 3 1

3 2 5 3 1 4

4 5 3 1 4 2

5 3 1 4 2 5

Based on idempotent commutative quasigroup (Q, ◦), we want to find the triple in

the STS(15) base on this quasigroup which contains (i) (3, 1) and (3, 3), (ii) (3, 2)

and (5, 2), and (iii) (3, 2) and (5, 3).

Solution. (i) For elements (3, 1) and (3, 3) of S, the first “coordinates” are the

same so these are contained in a triple of Type 1, namely {3, 1), (3, 2), (3, 3)}. This

is independent of the quasigroup (Q, ◦).

(ii) For elements (3, 2) and (5, 2) of S, the first coordinates are different so these

are contained in a triple of Type 2. They are in triple {(3, 2), (5, 2), (3 ◦ 5, 3)}. In

quasigroup (Q, ◦) we have 3 ◦ 5 = 4 so the triple of T containing the two given

elements is {(3, 2), (5, 2), (4, 3)}. Notice that we can list the elements in the order
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(5, 2) and (3, 1) and we still get the same triple because, by commutivity, 5 ◦ 3 = 4

also.

(iii) For elements (3, 2) and (5, 3) of S, the first coordinates are different so these

are contained in a triple of Type 2. We see from Figure 1.4 that the only Type

2 triples to contain elements of S with second coordinates 2 and 3 are of the

form {(i, 2), (j, 2), (i ◦ j, 3)}. So we must have i = 3 and i ◦ j = 3 ◦ j = 5.

We see from quasigroup (Q, ◦) that we must have j = 2 so that the triple is

{(3, 2), (2, 2), (5, 3)}. Notice that we can take j = 3 (instead of i = 3) since, by

commutivity, i ◦ j = i ◦ 3 = 5 implies that i = 2, and we get the same triple. �
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