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1.8. The 2n +1 and 2n + 7 Constructions

Note. In this section, we give two constructions which will allow us to construct
Steiner triple systems recursively. The two constructions allow us to use a STS(n)
to construct a STS(2n + 1) and a STS(2n + 7). These constructions will also
be useful when we consider the intersection problem for Steiner triple systems in

Section &8.2. The General Intersection Problem.

Definition. Let n be odd. A 1-factorization of K, 1 is a pair (X, F') where F is

a partition of K, 1 into n 1-factors with vertex set X.

Note 1.8.A. Let (Q,0) be an idempotent commutative quasigroup of order n,
where @) = {1,2,...,n}(n is odd here and such a quasigroup exists by Exercise
1.2.3(a,iii)). For each i € Q let F; = {{i,n +1}} U{{a,b} | aob =boa = i}.
We now show that F' = {F|, F,, ..., F,} is a 1-factorization of K, with vertex
set X ={1,2,...,n}. As {a,b} ranges over all possible unordered pairs of distinct
elements of @), we see that all edges of K, 1 of the form {a,b} (since (Q,o0) is
commutative, order does not matter) are present in F' (we can find which F; contains
{a,b} using o; it’s Fuop = Fpoq). An edge of the form {a,n + 1} is in F,. Hence,
all edges of K, 1 are present in F'. Since i appears exactly once in each row and

exactly once in each column of the quasigroup, then each F; is a 1-factor of K, 1.


https://faculty.etsu.edu/gardnerr/Design-Theory/notes-Design-Theory-LR2/Design-Theory-LR2-8-2.pdf

1.8. The 2n + 1 and 2n + 7 Constructions 2

Example 1.8.1. The technique of Note 1.8.A can be used with the following
idempotent commutative quasigroup (left) to produce the following 1-factorization

of Kg (right; with the obvious notation).
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Note. The 2n + 1 Construction of a STS(2n + 1) from a STS(n).
Let (S,T) be a Steiner triple system of order n and let (X, F') be a 1-factorization
of K, 1 with vertex set X, where X NS = &. Let §* = S U X and define a

collection of triples T™ as follows:
(1) T C T (that is, T contains all of T').

(2) Let a be any one-to-one (injective) mapping from S onto {1,2,...,n} (so a is
a bijection). For each x € S and each {a,b} € F,,, place the triple {z,a,b} in
T*

The (S*,T*) is a Steiner triple system of order 2n+1 (as is to be shown in Exercise

1.8.3). An illustration of the construction is:
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Example 1.8.2. We now illustrate the 2n + 1 construction to make a STS(2n +
1) = STS(15) from a STS(n) = STS(7) and a 1-factorization of Kg. Let (S,T)
be a Steiner triple system of order 7 where S = {x1, 29, x3, 24, x5, v, x7}. Let
(X, F) be the 1-factorization of K, ; = Kg given in Example 1.8.1 above. Define
a: S — {1,2,...,7} as xja = i for each € {1,2,...,7}. By (1) of the 2n + 1
Construction, each triple of the STS(7) is in 7™ (and these contain all pairs of
the form {x;,x;} where i # j). To illustrate (2) of the construction, suppose
we want to find the triple containing the pair {3,7}. We look for the 1-factor of
F containing {3,7} and we see that it is F,,, = F5. So with z;a0 = i = 5, we
take the triple {x5,3,7} € T*. Similarly, since (in the notation of Example 1.8.1)
F5 = {46,37,12,58}, we also have the triples {w5,4,6}, {x5,1,2}, and {z5,5,8} in
T*. Suppose we want to find the triple containing the pair {z4,2}. Since xya = 4,
then we look for 2 in the 1-factor F,,, = Fj and find the pair 26 = {2,6}. So we
take the triple {x4,2,6} € T*. Similarly, since (in the notation of Example 1.8.1)
Fy = {35,26,17,48}, we also have the triples {4, 3,5}, {x4,1,7}, and {z4,4,8} in
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T*. Hence, along with the triples of the STS(7) we have the following triples in 7™:
{w1,4,5},{x1,3,6},{x1,2,7},{x1,1,8}; {x2,5,6}, {xo,4, 7}, {2, 1,3}, {x2,2,8};

{x37 67 7}7 {Ig, 27 4}7 {33‘3, 17 5}7 {5133, 37 8}7 {23’4, 37 5}7 {5547 27 6}7 {5547 17 7}7 {1'4, 47 8}7
{1'5, 47 6}7 {ZE5, 37 7}7 {£E5, 17 2}7 {ZIS’5, 57 8}7 {ZIZ'(;, 57 7}7 {x67 27 3}7 {ZC(;, 17 4}7 {ZC67 67 8}7
{1'77 37 4}7 {5177, 27 5}7 {$77 17 6}7 {$77 77 8}

Notice that the STS(7) has (])/3 = 7 triples and we have an additional 28 triples
here, for a total of (125) /3 =35 =T+ 28 triples, as expected. [J

Note. A cycle on vertices 1, xo, . . ., xp with edges {z1, 22}, {x2, 23}, . .., {T1, 21},
{zk, z1} is denoted by any cyclic shift of the k-tuple (x1, zo, ..., zx) or (21, zk, Tp—1,

., T2). We define the length of an edge {a, b} in K,, as the length of the shortest
path between a and b in the cycle (1,2,3,...,n). Notice that each edge in K, has
a length of at most |n/2|. This is the same idea as a “difference” associated with
an edge in the technique of difference methods for the construction of cyclic Steiner
triple system; see my online notes for Graph Theory 1 (MATH 5340) on Supple-
ment. Graph Decompositions: Triple Systems. Now consider a complete graph Ko,
with vertex set Zs,. For d € Zs, \ {0} (that is, we take 0 < d < n), denote by (d)
the cycle (0,d,2d,3d, ...) (where we reduce the vertex labels modulo 2n).

Example 1.8.7. In K5 we have, for example, the cycles (4) = (0,4,8) and
(5) = (0,5,10,3,8,1,6,11,4,9,2, 7).


https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Graph-Decompositions-Triple-Systems.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Graph-Decompositions-Triple-Systems.pdf
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Note. If 0 < d < n then the set of all edges of K5, of length d is a 2-factor of
K5, (think of taking the edge {0, d} and then repeatedly applying the permutation
a:i+— 1+ 1 (mod 2n) until the edge returns to its original position). A 2-factor
is a 2-regular spanning subgraph by definition, so it can be partitioned into vertex
disjoint cycles (see, for example, my online notes for Introduction to Graph Theory
(MATH 4347/5347) on Section 3.1. Eulerian Circuits; notice Theorem 3.1.5). These
cycles are of the form (d) + i for 0 < i < ged(d,n) (where ged(d, n) is the greatest
common divisor of d and n; notice that if d and n are relatively prime then (d) is
an n-cycle). Hence all the cycles are of the same length. We denote this collection
of cycles (called a “parallel class” since the cycles are disjoint) as 7(d) or mo,d. We
have considered edges of length 0 < d < n in K5, but there are also edges of length
d = n. These edges for a 1-factor (d) of Ky,.

Example 1.8.8. The parallel class 7(3) in Kg is:
0 1 2
15 3 16 g 17 5
o) =
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