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1.8. The 2n + 1 and 2n + 7 Constructions

Note. In this section, we give two constructions which will allow us to construct

Steiner triple systems recursively. The two constructions allow us to use a STS(n)

to construct a STS(2n + 1) and a STS(2n + 7). These constructions will also

be useful when we consider the intersection problem for Steiner triple systems in

Section 8.2. The General Intersection Problem.

Definition. Let n be odd. A 1-factorization of Kn+1 is a pair (X, F ) where F is

a partition of Kn+1 into n 1-factors with vertex set X.

Note 1.8.A. Let (Q, ◦) be an idempotent commutative quasigroup of order n,

where Q = {1, 2, . . . , n}(n is odd here and such a quasigroup exists by Exercise

1.2.3(a,iii)). For each i ∈ Q let Fi = {{i, n + 1}} ∪ {{a, b} | a ◦ b = b ◦ a = i}.

We now show that F = {F1, F2, . . . , Fn} is a 1-factorization of Kn+1 with vertex

set X = {1, 2, . . . , n}. As {a, b} ranges over all possible unordered pairs of distinct

elements of Q, we see that all edges of Kn+1 of the form {a, b} (since (Q, ◦) is

commutative, order does not matter) are present in F (we can find which Fi contains

{a, b} using ◦; it’s Fa◦b = Fb◦a). An edge of the form {a, n + 1} is in Fa. Hence,

all edges of Kn+1 are present in F . Since i appears exactly once in each row and

exactly once in each column of the quasigroup, then each Fi is a 1-factor of Kn+1.

https://faculty.etsu.edu/gardnerr/Design-Theory/notes-Design-Theory-LR2/Design-Theory-LR2-8-2.pdf
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Example 1.8.1. The technique of Note 1.8.A can be used with the following

idempotent commutative quasigroup (left) to produce the following 1-factorization

of K8 (right; with the obvious notation).

Note. The 2n + 1 Construction of a STS(2n + 1) from a STS(n).

Let (S, T ) be a Steiner triple system of order n and let (X, F ) be a 1-factorization

of Kn+1 with vertex set X, where X ∩ S = ∅. Let S∗ = S ∪ X and define a

collection of triples T ∗ as follows:

(1) T ⊆ T ∗ (that is, T ∗ contains all of T ).

(2) Let α be any one-to-one (injective) mapping from S onto {1, 2, . . . , n} (so α is

a bijection). For each x ∈ S and each {a, b} ∈ Fxα, place the triple {x, a, b} in

T ∗

The (S∗, T ∗) is a Steiner triple system of order 2n+1 (as is to be shown in Exercise

1.8.3). An illustration of the construction is:
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Example 1.8.2. We now illustrate the 2n + 1 construction to make a STS(2n +

1) = STS(15) from a STS(n) = STS(7) and a 1-factorization of K8. Let (S, T )

be a Steiner triple system of order 7 where S = {x1, x2, x3, x4, x5, x6, x7}. Let

(X, F ) be the 1-factorization of Kn+1 = K8 given in Example 1.8.1 above. Define

α : S → {1, 2, . . . , 7} as xiα = i for each ∈ {1, 2, . . . , 7}. By (1) of the 2n + 1

Construction, each triple of the STS(7) is in T ∗ (and these contain all pairs of

the form {xi, xj} where i 6= j). To illustrate (2) of the construction, suppose

we want to find the triple containing the pair {3, 7}. We look for the 1-factor of

F containing {3, 7} and we see that it is Fxiα = F5. So with xiα = i = 5, we

take the triple {x5, 3, 7} ∈ T ∗. Similarly, since (in the notation of Example 1.8.1)

F5 = {46, 37, 12, 58}, we also have the triples {x5, 4, 6}, {x5, 1, 2}, and {x5, 5, 8} in

T ∗. Suppose we want to find the triple containing the pair {x4, 2}. Since x4α = 4,

then we look for 2 in the 1-factor Fx4α = F4 and find the pair 26 = {2, 6}. So we

take the triple {x4, 2, 6} ∈ T ∗. Similarly, since (in the notation of Example 1.8.1)

F4 = {35, 26, 17, 48}, we also have the triples {x4, 3, 5}, {x4, 1, 7}, and {x4, 4, 8} in
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T ∗. Hence, along with the triples of the STS(7) we have the following triples in T ∗:

{x1, 4, 5}, {x1, 3, 6}, {x1, 2, 7}, {x1, 1, 8}; {x2, 5, 6}, {x2, 4, 7}, {x2, 1, 3}, {x2, 2, 8};

{x3, 6, 7}, {x3, 2, 4}, {x3, 1, 5}, {x3, 3, 8}; {x4, 3, 5}, {x4, 2, 6}, {x4, 1, 7}, {x4, 4, 8};

{x5, 4, 6}, {x5, 3, 7}, {x5, 1, 2}, {x5, 5, 8}; {x6, 5, 7}, {x6, 2, 3}, {x6, 1, 4}, {x6, 6, 8};

{x7, 3, 4}, {x7, 2, 5}, {x7, 1, 6}, {x7, 7, 8}

Notice that the STS(7) has
(7
2

)
/3 = 7 triples and we have an additional 28 triples

here, for a total of
(15

2

)
/3 = 35 = 7 + 28 triples, as expected. �

Note. A cycle on vertices x1, x2, . . . , xk with edges {x1, x2}, {x2, x3}, . . . , {xk−1, xk},

{xk, x1} is denoted by any cyclic shift of the k-tuple (x1, x2, . . . , xk) or (x1, xk, xk−1,

. . . , x2). We define the length of an edge {a, b} in Kn as the length of the shortest

path between a and b in the cycle (1, 2, 3, . . . , n). Notice that each edge in Kn has

a length of at most bn/2c. This is the same idea as a “difference” associated with

an edge in the technique of difference methods for the construction of cyclic Steiner

triple system; see my online notes for Graph Theory 1 (MATH 5340) on Supple-

ment. Graph Decompositions: Triple Systems. Now consider a complete graph K2n

with vertex set Z2n. For d ∈ Z2n \ {0} (that is, we take 0 < d < n), denote by 〈d〉

the cycle (0, d, 2d, 3d, . . .) (where we reduce the vertex labels modulo 2n).

Example 1.8.7. In K12 we have, for example, the cycles 〈4〉 = (0, 4, 8) and

〈5〉 = (0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7).

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Graph-Decompositions-Triple-Systems.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Graph-Decompositions-Triple-Systems.pdf
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Note. If 0 < d < n then the set of all edges of K2n of length d is a 2-factor of

K2n (think of taking the edge {0, d} and then repeatedly applying the permutation

α : i 7→ i + 1 (mod 2n) until the edge returns to its original position). A 2-factor

is a 2-regular spanning subgraph by definition, so it can be partitioned into vertex

disjoint cycles (see, for example, my online notes for Introduction to Graph Theory

(MATH 4347/5347) on Section 3.1. Eulerian Circuits; notice Theorem 3.1.5). These

cycles are of the form 〈d〉+ i for 0 ≤ i < gcd(d, n) (where gcd(d, n) is the greatest

common divisor of d and n; notice that if d and n are relatively prime then 〈d〉 is

an n-cycle). Hence all the cycles are of the same length. We denote this collection

of cycles (called a “parallel class” since the cycles are disjoint) as π(d) or π2nd. We

have considered edges of length 0 < d < n in K2n, but there are also edges of length

d = n. These edges for a 1-factor 〈d〉 of K2n.

Example 1.8.8. The parallel class π(3) in K18 is:
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