2.3. 2-Fold Triple Systems

Note. In this section, we give two constructions to establish the existence of λ -fold triple systems in the case $\lambda = 2$. We start by repeating the definition given in Section 2.1. Triple Systems of Index $\lambda > 1$, but specifically with $\lambda = 2$.

Definition. A 2-fold triple system (or a triple system of index 2) is a pair (S, T), where S is a finite set and T is a collection of 3-element subsets of S called triples such that each pair of distinct elements of S belong to exactly two triples of T. The order of a 2-fold triple system (S, T) is |S|.

Note. We will see that a 2-fold triple system of order v exists if and only if $v \equiv 0$ or 1 (mod 3). This will require that we consider two cases, v = 3n and v = 3n + 1. In the event that $v \equiv 1$ or 3 (mod 6), we can simply take two copies of the triples of a STS(v) to produce a 2-fold triple system.

Example 2.3.1. (b) An example of a 2-fold triple of order 4 on $S = \{1, 2, 3, 4\}$ has triples $\{1, 2, 4\}, \{1, 2, 3\}, \{1, 3, 4\}, \text{ and } \{2, 3, 4\}.$

(c) An example of a 2-fold triple of order 7 on $S = \{1, 2, 3, 4, 5, 6, 7\}$ with no repeated triples has the collection T as:

$$\{1, 2, 4\}, \{2, 3, 5\}, \{3, 4, 6\}, \{4, 5, 7\}, \{5, 6, 1\}, \{6, 7, 2\}, \{7, 1, 3\}, \\ \{1, 2, 6\}, \{2, 3, 7\}, \{3, 4, 1\}, \{4, 5, 2\}, \{5, 6, 3\}, \{6, 7, 4\}, \{7, 1, 5\}.$$

Note. We have the usual geometric interpretation of a 2-fold triple system of order v as a decomposition of $2K_v$ into edge disjoint triangles.

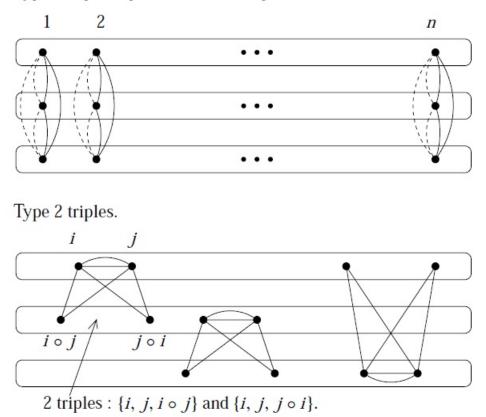
Definition. The *spectrum* for 2-fold triple systems is the set of integers v for which there exists a 2-fold triple system of order v.

Note. We will show that the spectrum of 2-fold triple systems is the set of all $v \equiv 0$ or 1 (mod 3) in Theorem 2.3.7. The result will follow by two constructions, which we now consider.

Note 2.3.A. For $v \equiv 0 \pmod{3}$, we consider v = 3n. Let (Q, \circ) be an idempotent quasigroup of order n and set $S = Q \times \{1, 2, 3\}$. We consider a collection of triples T of two types:

- **Type 1:** The "Type 1" triple $\{(x, 1), (x, 2), (x, 3)\}$ occurs exactly twice in T for each $x \in Q$.
- **Type 2:** The six Type 2 triples $\{(x, 1), (y, 1), (x \circ y, 2)\}, \{(y, 1), (x, 1), (y \circ x, 2)\}, \{(x, 2), (y, 2), (x \circ y, 3)\}, \{(y, 2), (x, 2), (y \circ x, 3)\}, \{(x, 3), (y, 3), (y \circ x, 1)\}, \{(y, 3), (x, 3), (y \circ x, 1)\}$ belong to T for all $x, y \in Q$ where $x \neq y$.

There are 2n Type 1 triples and $6\binom{n}{2}$ Type 2 triples. Figure 2.2 gives a visual representation of the construction.



Type 1 triples : place 2 vertical triples in each column.

Figure 2.2: The 3*n* Construction of 2-fold triple systems.

Note 2.3.B. For $v \equiv 1 \pmod{3}$, we consider v = 3n + 1. Let (Q, \circ) be an idempotent quasigroup of order n and set $S = \{\infty\} \cup (Q \times \{1, 2, 3\})$. We consider a collection of triples T of two types:

Type 1: The Type 1 triples $\{\infty, (x, 1), (x, 2)\}, \{\infty, (x, 2), (x, 3)\}, \{\infty, (x, 1), (x, 3)\}, \{(x, 1), x, 2), (x, 3)\}$ belong to T for every $x \in Q$.

Type 2: The six Type 2 triples $\{(x, 1), (y, 1), (x \circ y, 2)\}, \{(y, 1), (x, 1), (y \circ x, 2)\}, \{(x, 2), (y, 2), (x \circ y, 3)\}, \{(y, 2), (x, 2), (y \circ x, 3)\}, \{(x, 3), (y, 3), (y \circ x, 1)\}, \{(y, 3), (x, 3), (y \circ x, 1)\}$ belong to T for all $x, y \in Q$ where $x \neq y$.

There are 4n Type 1 triples and $6\binom{n}{2}$ Type 2 triples. Figure 2.3 gives a visual representation of the construction.

Type 1 triples. For each $i \in Q$ define a 2-fold triple system on { ∞ , (*i*,1), (*i*,2), (*i*,3) }.

Type 2 triples.

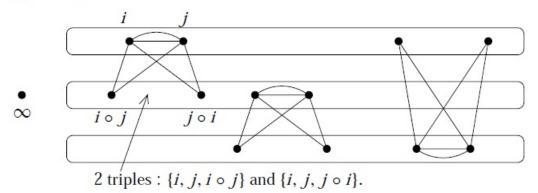


Figure 2.3: The 3n + 1 Construction of 2-fold triple systems.

Theorem 2.3.7. The spectrum for 2-fold triple systems is precisely the of all $v \equiv 0$ or 1 (mod 3).

Example 2.3.8. We illustrate the constructions of this section using the (noncommutative) idempotent quasigroup or order 4 given below. To illustrate both constructions, we create 2-fold triple systems of orders 12 and 13.

0	1	2	3	4
1	1	3	4	2
2	4	2	1	3
3	2	4	3	1
4	3	1	2	4

For an order 12 2-fold triple system we have the following types of blocks:

Type 1:
$$\{(1,1), (1,2), (1,3)\}, \{(1,1), (1,2), (1,3)\}, \{(2,1), (2,2), (2,3)\}, \{(2,1), (2,2), (2,3)\}, \{(3,1), (3,2), (3,3)\}, \{(3,1), (3,2), (3,3)\}, \{(4,1), (4,2), (4,3)\}, \{(4,1), (4,2), (4,3)\}.$$

 $\begin{aligned} \textbf{Type 2: } \{(1,1),(2,1),(3,2)\}, \{(2,1),(1,1),(4,2)\}, \{(1,1),(3,1),(4,2)\}, \\ \{(3,1),(1,1),(2,2)\}, \{(1,1),(4,1),(2,2)\}, \{(4,1),(1,1),(3,2)\}, \\ \{(2,1),(3,1),(1,2)\}, \{(3,1),(2,1),(4,2)\}, \{(2,1),(4,1),(3,2)\}, \\ \{(4,1),(2,1),(1,2)\}, \{(3,1),(4,1),(1,2)\}, \{(4,1),(3,1),(2,2)\}, \end{aligned}$

plus two more copies of the Type 2 triples, but first with all of the second coordinates increased by 1 in the first copy, and second with all of the second coordinates (as given above) of replacing the 1's with 3's and the 2's with 1's.

For an order 13 2-fold triple system we have the following types of blocks:

Type 1: {
$$\infty$$
, (1, 1), (1, 3)}, { ∞ , (1, 2), (1, 1)}, { ∞ , (1, 3), (1, 2)}, {(1, 1), (1, 2), (1, 3)}, { ∞ , (2, 1), (2, 3)}, { ∞ , (2, 2), (2, 1)}, { ∞ , (2, 3), (2, 2)}, {(2, 1), (2, 2), (2, 3)}, { ∞ , (3, 1), (3, 3)}, { ∞ , (3, 2), (3, 1)}, { ∞ , (3, 3), (3, 2)}, {(3, 1), (3, 2), (3, 3)}, { ∞ , (4, 1), (4, 3)}, { ∞ , (4, 2), (4, 1)}, { ∞ , (4, 3), (4, 2)}, {(4, 1), (4, 2), (4, 3)}.

Type 2: We use the exact same Type 2 triples as those given above in the construction of the order 12 2-fold triple system above.

Revised: 5/16/2022