2.5. $\lambda = 3$ and 6

2.5. $\lambda = 3$ and 6

Note. In this section we give constructions, based on idempotent quasigroups, for 3-fold and 6-fold triple systems.

Note 2.5.A. For v odd, let (Q, \circ) be an idempotent commutative quasigroup of order v (which exists by Exercise 1.2.3(a,iii), in which such quasigroups are created by rearranging the Cayley table of \mathbb{Z}_{2n+1}). Let $T = \{\{a, b, a \circ b\} \mid a < b \in Q\}$ (here by "a < b" we mean the usual inequality on elements of $\{0, 1, 2, \ldots, 2n\}$ when treated as elements of \mathbb{Z} ; though elements of \mathbb{Z}_{2n+1} are actually equivalence classes on \mathbb{Z} and cannot be ordered in the usual sense of the term). We'll see below that (Q, T) is a 3-fold triple system of order v. There are $0+1+2+\cdots+(v-1)=\frac{(v-1)v}{2}$ such triples.

Note 2.5.B. For any $v \neq 2$, let (Q, \circ) be an idempotent quasigroup of order v by Theorem 2.2.3. Let $T = \{\{a, b, a \circ b\} \mid a, b \in Q, a \neq b\}$. We'll see below that (Q, T) is a 6-fold triple system of order v. There are v(v - 1) such triples.

Note. In Exercise 2.5.9 it is to be shown (using Exercise 2.5.5) that the constructions given in Notes 2.5.A and 2.5.B actually yield 3-fold and 6-fold triple systems of order v, respectively. We therefore have the following.

Theorem 2.5.7. The spectrum for 3-fold triple systems is precisely the set of all odd integers $v \ge 1$. The spectrum for 6-fold triple systems is precisely the set of all positive integers $v \ne 2$.

Examples 2.5.1 and 2.5.8. Consider the idempotent commutative quasigroups of orders 7 and 4:

o ₁	1	2	3	4	5	6	7						
1	1	5	2	6	3	7	4			-	0	0	
2	5	2	6	3	7	4	1	-	°2	1	2	3	4
			0	0	•	1	-	-	1	1	3	4	2
3	2	6	3	7	4	1	5		ົງ	4	0	1	2
4	6	3	7	4	1	5	2		Z	4			0
_		_		_		-	_	-	3	2	4	3	1
5	3	7	4	1	5	2	6		4	2	1	2	1
6	7	4	1	5	2	6	3		4	0			4
_													
7	4	1	5	2	6	3	7						

By Note 2.5.A, $T = \{\{a, b, a \circ_1 b\} \mid a < b \in Q\}$ so that for a 3-fold triple system, T contains the triples

 $\{1, 2, 5\}, \{1, 3, 2\}, \{1, 4, 6\}, \{1, 5, 3\}, \{1, 6, 7\}, \{1, 7, 4\}, \{2, 3, 6\}, \\ \{2, 4, 3\}, \{2, 5, 7\}, \{2, 6, 4\}, \{2, 7, 1\}, \{3, 4, 7\}, \{3, 5, 4\}, \{3, 6, 1\}, \\ \{3, 7, 5\}, \{4, 5, 1\}, \{4, 6, 5\}, \{4, 7, 2\}, \{5, 6, 2\}, \{5, 7, 6\}, \{6, 7, 3\}.$

By Note 2.5.B, $T = \{\{a, b, a \circ_2 b\} \mid a, b \in Q, a \neq b\}$ so that for a 6-fold system, T contains the triples

 $\{1, 2, 3\}, \{1, 3, 4\}, \{1, 4, 2\}, \{2, 1, 4\}, \{2, 3, 1\}, \{2, 4, 3\} \\ \{3, 1, 2\}, \{3, 2, 4\}, \{3, 4, 1\}, \{4, 1, 3\}, \{4, 2, 1\}, \{4, 3, 2\}.$

Revised: 5/18/2022