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Chapter 3. Quasigroup Identities and

Graph Decompositions

Note. In this chapter, we consider identities in quasigroups in Section 3.1, ap-

ply these identities to Mendelsohn triple systems in Section 3.2, and apply these

identities to Steiner triple systems in Section 3.3.

3.1. Quasigroup Identities

Note. In this section, we introduce an orthogonal array associated with a quasi-

group. We then relate identities in the quasigroup to permutations of the rows of

the orthogonal array. In the process, we must discuss a little bit of group theory

from modern algebra.

Note 3.1.A. Let (Q, ◦) be a quasigroup of order n and define array R as an n2×3

array where ((a, b), c) := (a, b, c) ∈ R if and only if a ◦ b = c. Since a ◦ x = b and

y◦a = b have unique solutions for all a, b ∈ Q, then we have the following occurring

exactly once: (1) a in the first entry and b in the second entry (namely, when the

third entry is c), (2) a in the first entry and b in the third entry (namely when the

second entry is the unique x such that a ◦ x = b), and (3) a in the second entry

and b in the third entry (namely when the first entry is the unique y such that

y ◦ a = b). As Linder and Rodger put it (see page 65) “if we run our fingers down

any two columns of R we obtain all n2 ordered pairs (a, b) ∈ Q×Q,” as illustrated

below.
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Note. The converse of the claim in Note 3.1.A also holds. We formally claim this

in the following lemma.

Lemma 3.1.A. Let R be an n2 × 3 with the property that each ordered pair (a, b)

satisfies the following: (1) a in the first column and b in the second column in

exactly once (say when c is in the third column), (2) a in the first column and b in

the third column exactly once (say when x is in the second column), and (3) a in

the second column and b in the third column in exactly once (say when y is in row

one). Define a ◦ b = c based on property (1). Then (Q, ◦) is a quasigroup.

Note/Definition. We now have that every quasigroup (Q, ◦) is equivalent to an

n2 × 3 array R (called an orthogonal array) such that a ◦ b = c if and only if

((a, b), c) := (a, b, c) ∈ R. We now illustrate this idea with a quasigroup Q and an

orthogonal array R.
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Example 3.1.1. Consider the (idempotent) quasigroup on the left (below). Then

the corresponding orthogonal array R is as follows:

Note 3.1.B. Recall from Introduction to Modern Algebra (MATH 4127/5127; see

my online notes on Section II.8. Groups of Permutations) that the symmetric group

S3 has the following six elements. Here, the symbols 1, 2, or 3 in the first row of

each matrix are mapped to the symbols 1, 2, or 3 in the second row and same

https://faculty.etsu.edu/gardnerr/4127/notes/II-8.pdf
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column of each matrix. The “cycle notation” is also given

ρ0 =

 1 2 3

1 2 3

 = (1)(2)(3) µ1 =

 1 2 3

1 3 2

 = (1)(2, 3)

ρ1 =

 1 2 3

2 3 1

 = (1, 2, 3) µ2 =

 1 2 3

3 2 1

 = (2)(1, 3)

ρ2 =

 1 2 3

3 1 2

 = (1, 3, 2) µ3 =

 1 2 3

2 1 3

 = (1, 2)(3)

Under composition of mappings as a group operation, we have the following mul-

tiplication table (or “Cayley table”):

ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ0 ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 ρ0 µ3 µ1 µ2

ρ2 ρ2 ρ0 ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 ρ0 ρ1 ρ2

µ2 µ2 µ3 µ1 ρ2 ρ0 ρ1

µ3 µ3 µ1 µ2 ρ1 ρ2 ρ0

Notice that this table results from multiplying the permutations from right to left.

We have that S3 is not commutative because ρ2µ1 = µ3 6= µ2 = µ1ρ2. In fact, this

is the smallest order noncommutative (or nonabelian) group.

Definition. For R an n2 × 3 orthogonal array and α ∈ S3 a permutation on

{1, 2, 3}, define Rα to be the n2 × 3 array obtained from R by permuting the

columns of R by α.
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Lemma 3.1.B. If R is an n2 × 3 orthogonal array, then for every α ∈ S3 we have

Rα is also an orthogonal array.

Definition. If R is an orthogonal array, then it and the orthogonal array Rα

where α ∈ S3 (where S3 is the symmetric group of three symbols) are conjugate.

The associated quasigroups are also called conjugate.

Example 3.1.2. Consider the quasigroup (Q, ◦) given below and Rα where α is

the permutation

ρ1 =

 1 2 3

2 3 1

 = (1, 2, 3),

where (1, 2, 3) is the “cyclic notation” of the permutation:
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Definition. Two orthogonal arrays are equal if they define the same quasigroup.

Note 3.1.C. Equal orthogonal arrays will have the same rows, though the order

of the rows of one array may be jumbled up in the second array. The orthogonal

arrays R and R(1, 2, 3) of Example 3.1.2 are equal (as can be tediously verified).

Also, the quasigroup (Q, ◦) defined by these orthogonal arrays (given in Example

3.1.1) satisfies the identity (xy)x = y for all x, y ∈ Q. It is straightforward to

verify this, but in fact any quasigroup invariant under conjugation by α = (1, 2, 3)

(that is, any quasigroup equal to its conjugate under this permutation) satisfies

this identity, as we now show. Let R be the orthogonal array associated with the

quasigroup and let x, y ∈ Q. Then (x, y, x ◦ y) ∈ R (that is, it is a row of R), and

applying the permutation we also have that (x◦y, x, y) ∈ R. Therefore (x◦y)◦x = y

in (Q, ◦), or (xy)x = y, as claimed. Notice that the converse also holds. That is,

if (Q, ◦) satisfies (xy)x = y for all x, y ∈ Q then the quasigroup is invariant under

conjugation by α = (1, 2, 3) (which means that R = Rα). In Exercise 3.1.3, more

identities are related to permutations in S3.

Note. If a quasigroup (Q, ◦) is invariant under conjugation by permutations α and

β, then it (quite clearly) is invariant under conjugation by the permutation αβ. So

the set of permutations in S3 under which (Q, ◦) is invariant under conjugations, is

a set closed under the binary operation of permutation multiplication. This means

that the set of these permutations forms a subgroup of S3. See my online notes

for Introduction to Modern Algebra (MATH 4127/5127) on Section I.5. Subgroups;

notice Definition 5.4.

https://faculty.etsu.edu/gardnerr/4127/notes/I-5.pdf
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Definition. The subgroup of S3 defined as

{α | (Q, ◦) is invariant under conjugation by α}

is the conjugate invariant subgroup of (Q, ◦).

Example 3.1.6. The quasigroup of Example 3.1.1,

(Q, ◦) =

◦ 1 2 3 4

1 1 3 4 2

2 4 2 1 3

3 2 4 3 1

4 3 1 2 4

in invariant under conjugation by α = (1, 2, 3) as shown in Example 3.1.2. So it

is also invariant under conjugation by α2 = (1, 3, 2) and, of course, under conju-

gation by the identity permutation α3 = (1)(2)(3). Now (Q, ◦) is is not invari-

ant under conjugation by (1, 2), or else the identity xy = yx would be satisfied

by (Q, ◦) (see Exercise 3.1.8). Similarly (Q, ◦) is not invariant under conjuga-

tion by (1, 3) or (2, 3). Therefore, the conjugate invariant subgroup of (Q, ◦) is

〈(1, 2, 3)〉 = {(1)(2)(3), (1, 2, 3), (1, 3, 2)} (that is, the subgroup of S3 generated by

element (1, 2, 3) ∈ S3).

Definition. A quasigroup which has conjugate invariant subgroup of (all of) S3 is

totally symmetric. A quasigroup which is invariant under conjugation by (at least)

〈(1, 2, 3)〉 is semisymmetric.
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Note 3.1.D. The quasigroup of Examples 3.1.1 and 3.1.6 is semisymmetric, but not

totally symmetric. Notice from Exercise 3.1.8, a semisymmetric quasigroup satisfies

the identity x(yx) = y (or, equivalently, it satisfies the identity (xy)x = y). Also by

Exercise 3.1.8, a symmetric quasigroup must satisfy these identities along with each

of the identities yx = yx, (yx)y = y, and x(xy) = y. With a little group theory

knowledge, we could show that if a quasigroup satisfies x(yx) = y (or, equivalently,

(xy)x = y) and any of the identities yx = yx, (yx)y = y, and x(xy) = y, then

it is totally symmetric. We have seen that the subgroup generated by (1, 2, 3)

contains three permutations and we know that S3 contains six permutations. By

Lagrange’s Theorem (see my Introduction to Modern Algebra [MATH 4127/5127]

notes on Section II.10. Cosets and the Theorem of Lagrange; see Theorem 10.10)

we have that the conjugate invariant subgroup of a quasigroup has 1, 2, 3, or 6

elements. If is contains (1, 2, 3) then we know that it also contains the identity

and (1, 2, 3)2 = (1, 3, 2) so that the conjugate invariant subgroup contains three

permutations. It it contains any other permutation, then it must contain all six

permutations of S3.
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