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Chapter 4. Maximum Packings and

Minimum Coverings

Note. In this chapter, we address a sort-of approximation theorem for Steiner

triple systems. By Theorem 1.3.B, a Steiner triple system of order v exists if and

only if v ≡ 1 or 3 (mod 6). We consider how close we can get to a Steiner triple

system when v does not satisfy these conditions. We consider two approaches to

“closeness,” namely packings and coverings.

4.1. The General Problem

Note. In this section, we give two options for how to get “close” to a Steiner triple

system when v ≡ 0, 2, 4, or 5 (mod 6). In these cases we know that there is not a

collection of triples T which contains every pair of elements of set S exactly once.

So we have two options: we can either repeat some pairs or we can omit some pairs

in the collection of triples. We view these repeated pairs or omitted pairs as “bad,”

and want to minimize both. As with Steiner triple systems, there will be a graph

theoretic interpretation of both approaches. In an attempt to minimize omitted

pairs, we have the following.

Definition. A packing of the complete graph Kv with triangles is a triple (S, T, L),

where S is the vertex set of Kv, T is a collection of edge disjoint triangles from the

edge set of Kv, and L is the collection of edges in Kv not belonging to one of the

triangles of T . The collection of edges L is the leave. If |T | is as large as possible,

or equivalently if |L| is as small as possible, then (S, T, L) is a maximum packing

with triangles (MPT), or simply a maximum packing of order v.
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Note. A Steiner triple system is a maximum packing with leave L = ∅. We now

give some additional examples.

Example 4.1.1. We consider examples of maximum packings with triples for

v ≡ 0 (mod 6), v ≡ 4 (mod 6), and v ≡ 5 (mod 6).

(a) A maximum packing with triples of order 6, (S1, T1, L1) is given by:

S1 = {1, 2, 3, 4, 5, 6},

T1 = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {1, 5, 6}},

L1 = {{1, 3}, {2, 6}, {4, 5}}.

(b) A maximum packing with triples of order 10, (S2, T2, L2) is given by:

S2 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

T2 = {{2, 3, 4}, {1, 6, 7}, {1, 8, 9}, {1, 5, 10}, {2, 6, 9}, {2, 5, 7}, {2, 8, 10},

{3, 5, 6}, {3, 7, 8}, {3, 9, 10}, {4, 6, 10}, {4, 7, 9}, {4, 5, 8}},

L2 = {{1, 2}, {1, 3}, {1, 4}, {6, 8}, {7, 10}, {5, 9}}.

(c) A maximum packing with triples of order 11, (S3, T3, L3) is given by:

S3 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},

T3 = {{1, 3, 5}, {2, 4, 5}, {1, 6, 7}, {1, 8, 9}, {1, 10, 11}, {2, 6, 9}, {2, 7, 11},

{2, 8, 10}, {3, 6, 11}, {3, 7, 8}, {3, 9, 10}, {4, 6, 10}, {4, 7, 9}, {4, 8, 11},

{5, 6, 8}, {5, 7, 10}, {5, 9, 11}},

L3 = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}.

Notice that the leave in (S1, T1, L1), where v = 6, is a collection of three edges

which contain each vertex exactly once. Such a subgraph is called a “1-factor.”
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More formally, a spanning subgraph H of a graph G is a 1-factor of G if H every

vertex of H is of degree 1; see my online notes for Introduction to Graph Theory

(MATH 4347/5347) on Section 2.2. Edge Colorings. A schematic of a maximum

packing with triples of K8 is given in Figure 4.1, where the leave is also a 1-factor

(notice that v = 6 and v = 8 both fall in the category of values of v ≡ 0 or 2 (mod

6)).

Note. We will see in the next section (see Theorem 4.2.A) that a maximal packing

with triples has a leave of known structure (and size). As suggested in Example

4.1.1, we have that the leave L is:

(i) a 1-factor if v ≡ 0 or 2 (mod 6),

https://faculty.etsu.edu/gardnerr/5347/Notes/Pearls-GT-2-2.pdf
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(ii) a 4-cycle if v ≡ 5 (mod 6),

(iii) a tripole, that is a spanning graph with each vertex having odd degree and

containing (v + 2)/2 edges, if v ≡ 4 (mod 6), and

(iv) the empty set if v ≡ 1 or 3 (mod 6).

See Figure 4.2.

Note. In a packing of Kv, we minimized the ommitted pairs in the collection of

triples. In our second idea approach to closeness to a Steiner triple system, we

minimize the repeated pairs in the collection triples. This leads to the following

definition.
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Definition. A covering of the complete graph Kv with triangles is a triple (S, T, P ),

where S is the vertex set of Kv, P is a subset of the edge set of λKv based on S (so

P may have edges repeated multiples of times; technically we should speak of the

“multiset” P and the edge multiset of λKv), and T is a collection of edge disjoint

triangles which partition the union of multiset P and the edge set of Kv. The

collection of edges P is the padding and v is the order of the covering (S, T, P ). If

|P | is as small as possible then the covering (S, T, P ) is a minimum covering with

triangles (MCT), or simply a minimum covering of order v.

Note. Notice that in an attempt to achieve “closeness” to Steiner triple systems,

both maximal packings and minimal coverings are, in fact, minimization problems.

This is to be expected, since every approximation is best when the distance from

the desired quantity to the approximation is minimized. Here, we are measuring

the “distance” between a packing or covering to a Steiner triple system by counting

the number of omitted or repeated pairs, respectively.

Example 4.1.2. We consider examples of minimum coverings with triples for

v ≡ 5 (mod 6), v ≡ 0 (mod 6), and v ≡ 2 (mod 6).

(a) A minimum covering with triples of order 5, (S1, T1, P1) (where P1 may be a

multiset) is given by:

S1 = {1, 2, 3, 4, 5},

T1 = {{1, 2, 4}, {1, 2, 3}, {1, 2, 5}, {3, 4, 5}},

P1 = {{1, 2}, {1, 2}}.
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(b) A minimum covering with triples of order 6, (S2, T2, P2) (where P2 may be a

multiset) is given by:

S2 = {1, 2, 3, 4, 5, 6},

T2 = {{1, 2, 3}, {1, 2, 4}, {3, 4, 5}, {3, 4, 6}, {2, 5, 6}, {1, 5, 6}},

P2 = {{1, 2}, {3, 4}, {5, 6}}.

(c) A minimum covering with triples of order 8, (S3, T3, P3) (where P3 may be a

multiset) is given by:

S3 = {1, 2, 3, 4, 5, 6, 7, 8},

T3 = {{1, 2, 7}, {1, 4, 5}, {3, 5, 6}, {1, 2, 3}, {2, 4, 8}, {5, 7, 8},

{1, 3, 8}, {2, 5, 6}, {6, 7, 8}, {1, 4, 6}, {3, 4, 7}},

P3 = {{1, 2}, {1, 3}, {1, 4}, {5, 6}, {7, 8}}.

Note. We will see in the Section 4.3 (see Theorem 4.3.A) that a minimal covering

with triples has a leave of known structure (and size). As suggested in Example

4.1.2, we have that the padding P is:

(i) a 1-factor if v ≡ 0 (mod 6),

(ii) a tripole if v ≡ 2 or 4 (mod 6),

(iii) a double edge, {{a, b}, {a, b}} if v ≡ 5 (mod 6), and

(iv) the empty set if v ≡ 1 or 3 (mod 6).

See Figure 4.4.
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Note. In the introduction to Chapter 1 (given in the online notes on Section

1.1. The Existence Problem), we motivated the study of Steiner triple systems by

considering comparing some kind of samples in the fictional Motivationtron 3000.

This story can be extending to maximal packings and minimal coverings. We

can prioritize a maximal packing with a story about comparing as many samples

as possible without repetition (because of expense in running the Motivationtron

3000, say). We can prioritize a minimal covering with a story about comparing all

samples to each other, but still minimizing the number of runs of the Motivationtron

3000 (again because of expense, say). See my online talk “What the Hell do Graph

Decompositions have to do with Experimental Designs,” prepared as a PowerPoint

presentation. Notice in particular the sections on “What if a Graph Decomposition

https://faculty.etsu.edu/gardnerr/Design-Theory/notes-Design-Theory-LR2/Design-Theory-LR2-1-1.pdf
https://faculty.etsu.edu/gardnerr/Design-Theory/notes-Design-Theory-LR2/Design-Theory-LR2-1-1.pdf
https://faculty.etsu.edu/gardnerr/talks/Designs-Decompositions.pptx
https://faculty.etsu.edu/gardnerr/talks/Designs-Decompositions.pptx
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Does Not Exist,” and the subsections on “Graph Packing” and “Graph Covering.”

Note. As a final comment, I want to draw a parallel between packings and cover-

ings (as addressed in this section) and inner and outer measure (as dealt with in

introductory measure theory). The outer measure of a set of real numbers is defined

by covering the set with open intervals, adding up the lengths of the intervals, and

then taking a minimum (well, an infimum) over all such coverings. This is similar

to the covering of a complete graph with triples in such a way as to minimize the

repeated edges (we can legitimately say “minimize” in the discrete setting). The

inner measure of a set of real numbers is defined by packing compact sets inside

the set, adding up their measures (defined in terms or outer measure), and then

taking a maximum (well, a supremum) over all such packings. This is similar to the

packing of a complete graph with triples in such a way as to minimize the missed

edges. Outer measure is defined in Real Analysis 1 (MATH 5210); see my online

notes on Section 2.2. Lebesgue Outer Measure. Inner measure is a supplemental

topic in Real Analysis 1; see my supplemental online notes on An Alternate Ap-

proach to the Measure of a Set of Real Numbers. I have never seen this parallel

between ideas from such different areas of math anywhere else. To me it seems a

fairly natural analogy to draw. . .
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