7.5. Coordinatizing the Affine Plane

Note. In this section, we associate x-coordinates and y-coordinates with the points in an affine plane. This allows us to define the slope of a line and to represent lines in the form y = mx + b.

Note/Definition. Let (P, B) be an affine plane of order n. Then, by Exercise 7.1.3(c), (e), (f) (respectively), every line contains n points, $|P| = n^2$, and $|B| = n^2 + n$. By Exercise 7.3.2 there are n + 1 parallel classes. Label the parallel classes $V, H, \pi_1, \pi_2, \ldots, \pi_{n-1}$ and label the lines in V and H as:

$$V: x = 0, x = 1, x = 2, \dots, x = n - 1$$

$$H: y = 0, y = 1, y = 2, \dots, y = n - 1.$$

Point $p \in P$ has coordinates (i, j) if and only if p belongs to line x = i and the line y = j. Notice that by Exercise 7.1.3(d) every point is on n + 1 lines, so any given point must lie on exactly one line from each parallel class (of course a point can't lie on two lines in the same parallel class).

Note/Definition. Notice that by the definition of "coordinates," the line x = i contains precisely the points with first coordinate i, and the line y = j contains precisely the points with second coordinate j. The line y = 0 is the *x*-axis, the line x = 0 is the *y*-axis, the line x = 1 is the *line of slopes*, and the point (0,0) is the *origin*. See the figure below.

Note/Definition. As described above, any given point must lie on exactly one line from each parallel class. So each parallel class π_i has exactly one line ℓ containing the origin. Since $\ell \notin V$ and $\ell \notin H$, then ℓ must intersect each line in the parallel class x = 1. Let (1, m) be the point of intersection of ℓ and the line in parallel class x = 1. Then each line in parallel class π_i has *slope* m. A line in parallel class Vhas *no slope* and a line in parallel class H has slope 0. See the figure below.

Definition. A line in parallel class π_i can be labeled as y = mx + b where m is the slope and (0, b) is the point of intersection of the line with the y-axis. The equation y = mx + b is the *point slope formula* for the line.

Example 7.5.1. Consider again the parallel classes of the affine plane of order 2 from Examples 7.1.1(b) and 7.4.2:

$\{7, 8, 9\}$	$\{3, 6, 9\}$	$\{3, 4, 8\}$	$\{3, 5, 7\}$
$\{4, 5, 6\}$ $\{7, 8, 9\}$	$\{2, 5, 8\}$ $\{3, 6, 9\}$	$\{2, 6, 7\}$ $\{3, 4, 8\}$	$\{2, 4, 9\}$ $\{3, 5, 7\}$
$\{1, 2, 3\}$	$\{1, 4, 7\}$	$\{1, 5, 9\}$	$\{1, 6, 8\}$

We label the lines of H and V as needed:

	$x = 2: \{7, 8, 9\}$ y	$y = 2: \{3, 6, 9\}$
TZ TI	$x = 2: \{7, 8, 9\}$ y	$y = 2: \{3, 6, 9\}$

We find the coordinates of the 9 points (represented by symbols $1, 2, \ldots, 9$) by finding the two lines in V and H that contain the point: 1 = (0, 0), 2 = (1, 0),3 = (2, 0), 4 = (0, 1), 5 = (1, 1), 6 = (2, 1), 7 = (0, 2), 8 = (1, 2), and 9 = (2, 2).Now we find the point-slope formula for the remaining six lines. For parallel class π_1 , we find the line containing the symbols (0, 0) = 1. This is line $\ell = \{1, 5, 9\} \in \pi_1$. The intersection of line $\ell = \{1, 5, 9\}$ with line $x = 1 : \{2, 5, 8\}$ is the symbol 5 which represents the point (1, 1) = (1, m) and so m = 1 is the slope of all lines in π_1 . So lines in parallel class π_1 are of the form y = 1x + b for some b. For parallel class π_2 , we find the line containing the symbols (0, 0) = 1. This is line $\ell = \{1, 6, 8\} \in \pi_2$. The intersection of line $\ell = \{1, 6, 8\}$ with line $x = 1 : \{2, 5, 8\}$ is the symbol 8 which represents the point (1, 2) = (1, m) and so m = 2 is the slope of all lines in π_2 . So lines in parallel class π_2 are of the form y = 2x + b for some b. Next, the value of b for a given line results from the symbol of intersection of the line with the y-axis $x = 0 : \{1, 4, 7\}$ expressed in coordinates of the form (0, b). For the six lines we have:

π_i	line	y-axis	symbol of intersection	b	y = mx + b
π_1	$\{1, 5, 9\}$	$\{1, 4, 7\}$	1 = (0, 0)	0	y = 1x + 0
π_1	$\{2, 6, 7\}$	$\{1, 4, 7\}$	7 = (0, 2)	2	y = 1x + 2
π_1	$\{3, 4, 8\}$	$\{1, 4, 7\}$	4 = (0, 1)	1	y = 1x + 1
π_2	$\{1, 6, 8\}$	$\{1, 4, 7\}$	1 = (0, 0)	0	y = 2x + 0
π_2	$\{2, 4, 9\}$	$\{1, 4, 7\}$	4 = (0, 1)	1	y = 2x + 1
π_2	$\{3, 5, 7\}$	$\{1, 4, 7\}$	7 = (0, 2)	2	y = 2x + 2

Revised: 6/1/2022