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Chapter 8. Intersections of Steiner

Triple Systems

8.1. Teirlinck’s Algorithm

Note. In this section, we show that for every Steiner triple system on a set S,

there is a second Steiner triple system on set S which has no triples in common

with the first system. The results of the section appear in Luc Teirlinck’s “On

Making Two Steiner Triple Systems Disjoint,” Journal of Combinatorial Theory,

Series A, 23, 349–350. This paper can be views online on the ScienceDirect website.

Luc Teirlinck is another of the Auburn University combinatorics faculty. He was

a colleague of Curt Lindner and Chris Rodger and served on my master’s thesis

committee in the 1980s. He is currently retired is an emeritus professor.

From Professor Tierlinck’s faculty webpage (accessed 8/17/2022)

Definition. Two Steiner triple systems on the same set S, (S, T1) and (S, T2), are

disjoint if they have no triples in common; that is, if T1 ∩ T2 = ∅.

https://www.sciencedirect.com/science/article/pii/0097316577900279
https://auburn.edu/cosam/faculty/math_stats/retired%20faculty/teirlinck/index.htm
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Example 8.1.1. An example of two disjoint STS(7) on set S = {1, 2, 3, 4, 5, 6, 7}

have triples:

T1 =



1 2 4

2 3 5

3 4 6

4 5 7

5 6 1

6 7 2

7 1 3

T2 =



1 2 5

2 4 4

4 5 3

5 6 7

6 3 1

3 7 2

7 1 4

Note. Informally, an isomorphism of two mathematical objects is a bijection (a

one-to-one and onto) mapping from object to the other that preserves structure.

For example, the structure of a a graph is adjacency so, more formally, a graph

isomorphism is a bijection between the two vertex sets that preserves adjacency

(see my online notes for Introduction to Graph Theory (MATH 4347/5347) on

Section 1.2. Subgraphs, Isomorphic Graphs). The structure of a vector space is

the interaction of vectors and scalars (that is, linear combinations), so a vector

space isomorphism is a bijection between the sets of vectors which preserves linear

combinations (see my online notes for Linear Algebra (MATH 2010) on Section 3.3.

Coordinatization of Vectors; the vector spaces must have a common scalar field for

an isomorphism to be defined). In a group, the structure is the binary operation,

and so forth. The structure of a Steiner triple system is the collection of triples.

Hence, we have the following definition.

https://faculty.etsu.edu/gardnerr/5347/Notes/Pearls-GT-1-2.pdf
https://faculty.etsu.edu/gardnerr/2010/c3s3.pdf
https://faculty.etsu.edu/gardnerr/2010/c3s3.pdf
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Definition. Let (S, T1) and (S, T2) be Steiner triple systems. If there is a permu-

tation α on S (that is, α is a bijection mapping S → S) such that

T1α = {{xα, yα, zα} | {x, y, z} ∈ T1} = T2,

then (S, T1) and (S, T2) are isomorphic. Mapping α is a Steiner triple system

isomorphism.

Example 8.1.2. The two Steiner triple systems of Example 8.1.2 are isomorphic

with isomorphism α =

 1 2 3 4 5 6 7

1 2 4 5 6 3 7

 = (3, 4, 5, 6). That is, we have

T1α = T2.

Note. Recall that every permutation in the symmetric group Sn can be written

as a product of transpositions (that is, cycles of length two). See my online notes

for Introduction to Modern Algebra (MATH 4127/5127) on Section II.9. Orbits,

Cycles, Alternating Groups; notice Corollary 9.12. We seek an isomorphism α

that allows us to find a disjoint “mate” to a given Steiner triple system, as in the

previous example. We will do so by constructing α as a product of transpositions.

Note 8.1.A. Denote the transposition that interchanges a and b by (a, b) (notice

that Lindner and Rodger omit the comma in their notation). Let (S, T1) and (S, T2)

be any two Steiner triple systems of order n and let {c, d, e} ∈ T1 ∩ T2. Define the

https://faculty.etsu.edu/gardnerr/4127/notes/II-9.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/II-9.pdf
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sets

A(c) = {a | {a, x, y} ∈ T1 and {c, x, y} ∈ T2 \ {c, d, e}}

B(c) = {b | {b, z, w} ∈ T2 and {c, z, w} ∈ T1 \ {c, d, e}}.

Hence set A(c) is related to the triples of T2 which, when c is replaced by a, are

shared by both triple systems (with the exception of triple {c, d, e}, if applicable).

Set B(c) is related to the triples of T1 which, when c is replaced by b, are shared

by both triple systems (with the exception of triple {c, d, e}, if applicable). The

plan is to make some interchanges of elements of S in order to produce disjoint

Steiner triple systems. Define the spread of c with respect to {c, d, e} as S(c) =

{c, d, e} ∪ A(c) ∪ B(c). This is illustrated as follows, where t = (n − 3)/2 so that

either triple system has t+1 = (t−1)/2 triples containing c; there are t such triples

in addition to the shared triple {c, d, e}. Notice that if {c, d, e}, A(c), and B(c) are

pairwise disjoint then |S(c)| = 3 + 2(n− 3)/2 = n and S(c) = S, and conversely.
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Example 8.1.3. To illustrate spread, consider the two Steiner triple systems of

order 15 of (S, T1) and (S, T2)with the following triples (given here in an obvious

notation):

T1 :

1 2 3 2 4 7 3 5 15 10 12 14 9 4 12

1 4 11 2 5 8 3 6 10 11 13 15 10 11 5

1 5 12 2 6 9 3 7 11 4 5 13 11 12 6

1 6 13 2 10 13 3 8 12 5 6 14 12 13 7

1 7 14 2 11 14 3 9 13 6 7 15 13 14 8

1 8 15 2 12 15 4 6 8 7 8 10 14 15 9

1 9 10 3 4 14 5 7 9 8 9 11 15 10 4

T2 :

1 2 3 2 4 7 3 5 13 10 12 14 15 10 6

1 4 15 2 5 8 3 6 14 11 13 15 4 5 11

1 5 10 2 6 9 3 7 15 10 11 7 5 6 12

1 6 11 2 10 13 3 8 10 11 12 8 6 7 13

1 7 12 2 11 14 3 9 11 12 13 9 7 8 14

1 8 13 2 12 15 4 6 8 13 14 4 8 9 15

1 9 14 3 4 12 5 7 9 14 15 5 9 4 10

(a) Notice that triple {5, 7, 9} is common to both STSs, {5, 7, 9} ∈ T1 ∩ T2. We

take c = 5. With respect to this triple we have (reading left to right and repeating

values; the relevant triples are in blue fonts above) A(c) = A(5) = {9, 5, , 9, 1, 11}.

Similarly, B(c) = B(5) = {7, 5, 7, 14, 3, 7}. So the spread of c = 5 is S(5) =

{5, 7, 9} ∪ A(5) ∪B(5) = {1, 3, 5, 7, 9, 11, 14}.

(b) We have {1, 2, 3} ∈ T1 ∩ T2 and take c = 3. With respect to the com-

mon triple we have S(3) = {1, 2, 3} ∪ A(5) ∪ B(5) = {5, 7, 9} ∪ {4, 5, 6, 7, 8, 9} ∪
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{10, 11, 12, 13, 14, 15} = {1, 2, . . . , 15} = S.

Note. Our ultimate goal in this section is to produce a disjoint mate for a given

Steiner triple system. In this direction, we consider “The Reduction Algorithm”

that allows us to consider two STSs (S, T1) and (S, T2) which share a triple, and

modify the triples in T2 is such a way that the result is a new STS with fewer

triples in common with T1 than T2 had. This algorithm appears in Jean Doyen,

“Constructions of Disjoint Steiner Triple Systems,” Proceedings of the American

Mathematical Society, 32, 409–416 (1972) (available on the AMS website; accessed

8/19/2022). We state the result of the algorithm as a theorem and use the algorithm

itself as the proof for the theorem.

Theorem 8.1.A. The Reduction Algorithm. Let (S, T1) and (S, T2) be any

two STS(n)s and suppose that {1, 2, 3} ∈ T1∩T2 and |S(3)| < n. Then there exists

a transposition α such that T1 ∩ T2α ⊆ T1 ∩ T2 and |T1 ∩ T2α| < |T1 ∩ T2|.

Example 8.1.8(a). Let (S, T1) and (S, T2) be the two STS(9)s with the triples:

T1 =

1 2 3 1 4 7 1 5 9 1 6 8

4 5 6 2 5 8 2 6 7 2 4 9

7 8 9 3 6 9 3 4 8 3 5 7

T2 =

1 2 3 1 4 7 1 9 5 1 8 6

4 9 8 2 9 6 2 8 7 2 4 5

7 6 5 3 8 5 3 4 6 3 9 7

Then T1 ∩ T2 = {{1, 2, 3}, {1, 4, 7}, {1, 5, 9}, {1, 6, 8}}. We consider {1, 2, 3} ∈

https://www.ams.org/journals/proc/1972-032-02/S0002-9939-1972-0295928-2/S0002-9939-1972-0295928-2.pdf
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T1 ∩ T2. With c = 3 we have (as illustrated in blue) A(c) = A(3) = {2, 5, 8} and

(illustrated in red) B(c) = B(3) = {2, 9, 6}. Therefore S(c) = S(3) = {1, 2, 3} ∪

A(3) ∪B(3) = {1, 2, 3, 5, 6, 8, 9}. Since 4 6∈ S(3), if we take α = (3, 4) then (as can

be checked; see Exercise 8.1.9) T1 ∩ T2 = (T1 ∩ T2) \ I = {{1, 5, 9}, {1, 6, 8}}. So

T1 and T2α share fewer triples than the original T1 and T2. Notice that in Exercise

8.1.8(b), c is taken to be 1 (where we still start with triple {1, 2, 3} as the shared

triple) and α = (1, 4) from which T1 and T2α then only share one triple.

Note 8.1.B. If we can repeatedly apply the Reduction Algorithm (Theorem 8.1.A)

to produce a sequence of transpositions (and hence a permutation) on S such

that T1 ∩ T2α1α2 · · ·αj = ∅, then the result is a disjoint mate of Steiner triple

system (S, T1). But a case can arise in which the hypotheses of the Reduction

Algorithm are not satisfied. This can happen when every element of every triple of

T1∩T2α1α2 · · ·αj has spread equal to all of S (so that the element c ∈ S cannot be

chosen such that |S(c)| < n). It is Teirlinck’s Algorithm that addresses this case.

Theorem 8.1.B. Teirlinck’s Algorithm. Let (S, T1) and (S, T2) be any two

STS(n)s and suppose that {1, 2, 3} ∈ T1 ∩ T2 and S(3) = S. Then there exists a

transposition α such that T1∩T2α contains a triple t and an element e ∈ t such that

|S(e)| < n (where this spread is with respect to triple t) and |T1 ∩T1α| ≤ |T1 ∩T2|.

Note. Teirlinck’s Algorithm is illustrated graphically on the next page (from page

173 of the textbook).
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Note. Teirlink’s Algorithm is illustrated graphically for a specific example in

Example 8.1.11 and similarly in Exercises 8.1.12 and 8.1.13.

Note. Given two STSs, (S, T1) and (S, T2), we can iteratively apply the Reduction

Algorithm (Theorem 8.1.A) to create a sequence of new STSs (S, T2α1), (S, T2α1α2),

. . . (S, T2α1α2 · · ·αk) where each αi is a transposition and

|T1 ∩ T2| > |T1 ∩ T2α1| > |T1 ∩ T2α1α2| > · · · > |T1 ∩ T2α1α2 · · ·αj|.

Either this sequence terminates when T1 ∩ T2α1α2 · · ·αj = ∅ (in which case we

have an isomorphic disjoint mate to (S, T1)) or we “get stuck” when every element

of every triple of T1 ∩ T2α1α2 · · ·αj has spread equal to all of S (see Note 8.1.B).

If we do get stuck, then we can apply Teirlinck’s Algorithm to introduce another

transposition αj+1 (say) so that |T1 ∩ T2α1α2 · · ·αj| ≥ ||T1 ∩ T2α1α2 · · ·αjαj+1| and

we are “unstuck” (that is, |S(e)| < n with respect to some triple t). Continuing in

this way of applying the Reduction Algorithm and Tierlinck’s Algorithm (to the

appropriate cases), we get the following.

Theorem 8.1.15. Let (S, T1) and (S, T2) be any two Steiner triple systems of order

n. Then there exist transpositions α1, α2, . . . , αk such that T1 ∩ T2α1α2 · · ·αk = ∅.

Note. We now see that any given any Steiner triple system (S, T1), there is a

disjoint mate of the Steiner triple system that is isomorphic to (S, T1). We simply

take T2 = T1 and apply Theorem 8.1.15. The isomorphism is given by the product

of the transpositions. Formally, we have the following.
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Corollary 8.1.16. Every Steiner triple system has an isomorphic disjoint mate.

Note. As a final comment, notice the very constructive nature of the ultimate

proof of Corollary 8.1.16. This is a common approach in discrete math (less so in

some other areas of math).

Revised: 8/19/2022


