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Appendix A. Cyclic Steiner Triple Systems

Note. In this Appendix we give solutions to Heffter’s First and Second Difference

Problems, which we encountered in Section 1.7. Cyclic Steiner Triple Systems. We

saw in that section that solutions to Heffter’s Difference Problems can be used to

construct cyclic Steiner triple systems (see Theorem 1.7.6). These problems were

posed by Lothar Heffter (June 11, 1862–January 1, 1962) in “Ueber Tripelsysteme,”

Mathematische Annalen 49(1), 101–112 (1897). This paper is available online

on the ARchive.org webpage. He did not solve the problem, however. It was

solved by Rose Peltesohn (May 16, 1913–March 21, 1998) in “Eine Lösung der

beiden Heffterschen Differenzenprobleme [A Solution to the Two Heffter Difference

Problems],” Compositio Mathematica, 6 251–257 (1939). This paper is available

online on the Numdam website, but the result is also given in Appendix A of the

text book.

Lothar Heffter Rose Peltesohn

https://faculty.etsu.edu/gardnerr/Design-Theory/notes-Design-Theory-LR2/Design-Theory-LR2-1-7.pdf
https://ia800708.us.archive.org/view_archive.php?archive=/22/items/crossref-pre-1909-scholarly-works/10.1007%252Fbf01444131.zip&file=10.1007%252Fbf01445363.pdf
http://archive.numdam.org/article/CM_1939__6__251_0.pdf
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These images are from the German Wikipedia website on Lothar Heffter and the

Wikipedia webpage on Rose Peltesohn. These websites were all accessed 5/12/2022.

Note. Recall that Heffter’s First and Second Difference Problems state:

(1) Let v = 6n + 1. Is it possible to partition the set {1, 2, . . . , 3n} into difference

triples?

(2) Let v = 6n + 3. Is it possible to partition the set {1, 2, . . . , 3n + 1} \ {2n + 1}

into difference triples?

Heffter’s First Difference Problem deals with partitioning the set {1, 2, . . . , (v −

1)/2}, and Heffter’s Second Difference Problem deals with partitioning the set

{1, 2, . . . , (v − 1)/2} \ {v/3}.

Note A.1. First, we consider seven small cases. Unlike the Appendix in the text

book, we include the v/3 difference (separately) to make checking the solutions

easier. Notice that we should have all numbers 1, 2, . . . , (v − 1)/2 present in each

case, and that x + y = ±z (mod v) in each case. This is straightforward (but a

little tedious) to confirm here.

v = 7: {1, 2, 3}.

v = 13: {1, 3, 4}, and {2, 5, 6}.

v = 15: {1, 3, 4}, {2, 6, 7}, and {5}.

v = 19: {1, 5, 6}, {2, 8, 9}, and {3, 4, 7}.

v = 27: {1, 12, 13}, {2, 5, 7}, {3, 8, 11}, {4, 6, 10}, and {9}.

v = 45: {1, 11, 12}, {2, 17, 19}, {3, 20, 22}, {4, 10, 14}, {5, 8, 13}, {6, 18, 21}, and

{7, 9, 16}, and {15}.

https://de.wikipedia.org/wiki/Lothar_Heffter
https://en.wikipedia.org/wiki/Rose_Peltesohn
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v = 63: {1, 15, 16}, {2, 27, 29}, {3, 25, 28}, {4, 14, 18}, {5, 26, 31}, {6, 17, 23}, {7, 13, 20},

{8, 11, 19}, {9, 24, 30}, {10, 12, 22}, {21}.

Note A.2. Suppose v ≡ 1 (mod 18) and v ≥ 37. Say v = 18s + 1 where s ≥ 2.

Notice that (3r+1)+(4s−r+1) = (4s+2r+2), (3r+2)+(8s−r) = (8s+2r+2),

(3r +3)+ (6s− 2r− 1) = (6s+ r +2), and (3s)+ (3s+1) = (6s+1) so each of the

triples given in the first column of the following table is, in fact, a difference triple.

We need to check that all numbers 1, 2, . . . , (v− 1)/2 (or their negatives modulo v;

see Note 1.7.A) are present. Here (v − 1)/2 = 9s.

{3r + 1, 4s− r + 1, 4s + 2r + 2} 1, 4, . . . , 3s− 2; 1 (mod 3)

for 0 ≤ r ≤ s− 1 3s + 2, 3s + 3, . . . , 4s + 1

4s + 2, 4s + 4, . . . , 6s even

{3r + 2, 8s− r, 8s + 2r + 2} 2, 5, . . . , 3s− 1; 2 (mod 3)

for 0 ≤ r ≤ s− 1 7s + 1, 7s + 2, . . . , 8s

8s + 2, 8s + 4, . . . , 10s even∗

{3r + 3, 6s− 2r − 1, 6s + r + 2} 3, 6, . . . , 3s− 3; 0 (mod 3)

for 0 ≤ r ≤ s− 2 4s + 3, 4s + 5, . . . , 6s− 1 odd

6s + 2, 6s + 3, . . . , 7s

{3s, 3s + 1, 6s + 1} 3s, 3s + 1, 6s + 1

*Notice that all differences of Heffter’s Difference Problems are between 1 and

(v − 1)/2 = 9s, so any difference larger than 9s can be replaced with its negative

(mod v), as stated in Note 1.7.A. Hence, if s is even, then the differences 8s+2, 8s+

4, . . . , 10s correspond to the differences of 8s + 2, 8s + 4, . . . , 9s, v − (9s + 2), v −

(9s + 4), . . . , v − (10s), which equal 8s + 2, 8s + 4, . . . , 9s, 9s− 1, 9s− 3, . . . 8s + 1

(respectively) or, in order, 8s+1, 8s+2, 8s+3, . . . , 9s. If s is odd, then the differences
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8s+2, 8s+4, . . . , 10s correspond to the differences of 8s+2, 8s+4, . . . , 9s− 1, v−

(9s + 1), v − (9s + 3), . . . , v − (10s), which equal 8s + 2, 8s + 4, . . . , 9s− 1, 9s, 9s−

2, 9s−4, . . . 8s+1 (respectively) or, in order, 8s+1, 8s+2, 8s+3, . . . , 9s. Whether

s is even or odd, the differences 8s + 1, 8s + 2, . . . , 9s.

Note A.3. Suppose v ≡ 7 (mod 18) and v ≥ 25. Say v = 18s + 7 where s ≥ 1.

Notice that (3r+1)+(8s−r+3) = (8s+2r+4), (3r+2)+(6s−2r+1) = (6s+r+3),

(3r + 3) + (4s− r + 1) = (4s + 2r + 4), and (3s + 1) + (4s + 2) = (7s + 3) so each

of the triples given in the first column of the following table is, in fact, a difference

triple. We need to check that all numbers 1, 2, . . . , (v − 1)/2 (or their negatives

modulo v; see Note 1.7.A) are present. Here (v − 1)/2 = 9s + 3.

{3r + 1, 8s− r + 3, 8s + 2r + 4} 1, 4, . . . , 3s− 2; 1 (mod 3)

for 0 ≤ r ≤ s− 1 7s + 4, 7s + 5, . . . , 8s + 3

8s + 4, 8s + 6, . . . , 10s + 2 even∗

{3r + 2, 6s− 2r + 1, 6s + r + 3} 2, 5, . . . , 3s− 1; 2 (mod 3)

for 0 ≤ r ≤ s− 1 4s + 3, 4s + 5, . . . , 6s + 1 odd

6s + 3, 6s + 4, . . . , 7s + 2

{3r + 3, 4s− r + 1, 4s + 2r + 4} 3, 6, . . . , 3s; 0 (mod 3)

for 0 ≤ r ≤ s− 1 3s + 2, 3s + 3, . . . , 4s + 1

4s + 4, 4s + 6, . . . , 6s + 2 even

{3s + 1, 4s + 2, 7s + 3} 3s + 1, 4s + 2, 7s + 3

*Notice that all differences of Heffter’s Difference Problems are between 1 and

(v − 1)/2 = 9s + 3, so any difference larger than 9s + 3 can be replaced with its

negative (mod v), as stated in Note 1.7.A. Hence, if s is even, then the differences

8s+4, 8s+6, . . . , 10s+2 correspond to the differences of 8s+4, 8s+6, . . . , 9s+2, v−
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(9s+4), v−(9s+6), v−(9s+8), . . . , v−(10s+2), which equal 8s+4, 8s+6, . . . , 9s+

2, 9s + 3, 9s + 1, 9s − 1, . . . , 8s + 5 (respectively) or, in order, 8s + 4, 8s + 5, 8s +

6 . . . , 9s+3. If s is odd, then the differences 8s+4, 8s+6, . . . , 10s correspond to the

differences of 8s + 4, 8s + 6, . . . , 9s + 3, v− (9s + 5), v− (9s + 7), . . . , v− (10s + 2),

which equal 8s + 4, 8s + 6, . . . , 9s + 3, 9s + 2, 9s, 9s − 2, . . . 8s + 5 (respectively)

or, in order, 8s + 4, 8s + 5, . . . , 9s + 3. Whether s is even or odd, the differences

8s + 4, 8s + 5, 8s + 6, . . . , 9s + 3.

Note A.4. Suppose v ≡ 13 (mod 18) and v ≥ 31. Say v = 18s + 13 where s ≥ 1.

Notice that (3r+2)+(6s−2r+3) = (6s+r+5), (3r+3)+(8s−r+5) = (8s+2r+8),

(3r+1)+(4s− r+3) = (4s+2r+4), and (3s+2)+(7s+5) ≡ −(8s+6) ≡ 10s+7

(mod 18s+13) so each of the triples given in the first column of the following table

is, in fact, a difference triple. We need to check that all numbers 1, 2, . . . , (v− 1)/2

(or their negatives modulo v; see Note 1.7.A) are present. Here (v− 1)/2 = 9s + 6.

{3r + 2, 6s− 2r + 3, 6s + r + 5} 2, 5, . . . , 3s− 1; 2 (mod 3)

for 0 ≤ r ≤ s− 1 4s + 5, 4s + 7, . . . , 6s + 3 odd

6s + 5, 6s + 6, . . . , 7s + 4

{3r + 3, 8s− r + 5, 8s + 2r + 8} 3, 6, . . . , 3s; 0 (mod 3)

for 0 ≤ r ≤ s− 1 7s + 6, 7s + 7, . . . , 8s + 5

8s + 8, 8s + 10, . . . , 10s + 6 even∗

{3r + 1, 4s− r + 3, 4s + 2r + 4} 1, 4, . . . , 3s + 1; 1 (mod 3)

for 0 ≤ r ≤ s 3s + 3, 3s + 4, . . . , 4s + 3

4s + 4, 4s + 6, . . . , 6s + 4 even

{3s + 2, 7s + 5, 8s + 6} 3s + 2, 7s + 5, 8s + 6

*Notice that all differences of Heffter’s Difference Problems are between 1 and
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(v − 1)/2 = 9s + 6, so any difference larger than 9s + 6 can be replaced with its

negative (mod v), as stated in Note 1.7.A. Hence, if s is even, then the differences

8s+8, 8s+10, . . . , 10s+6 correspond to the differences of 8s+8, 8s+10, . . . , 9s+

6, v− (9s+8), v− (9s+10), . . . , v− (10s+6), which equal 8s+8, 8s+10, . . . , 9s+

6, 9s+5, 9s+3, . . . 8s+7 (respectively) or, in order, 8s+7, 8s+8, 8s+9, . . . , 9s+6.

If s is odd, then the differences 8s + 8, 8s + 10, . . . , 10s + 6 correspond to the

differences of 8s + 8, 8s + 10, . . . , 9s + 5, v− (9s + 7), v− (9s + 9), . . . , v− (10s + 6),

which equal 8s+8, 8s+10, . . . , 9s+5, 9s+6, 9s+4, 9s+2, . . . 8s+7 (respectively)

or, in order, 8s + 7, 8s + 8, . . . , 9s + 6. Whether s is even or odd, the differences

8s + 7, 8s + 8, . . . , 9s + 6.

Note A.5. Suppose v ≡ 3 (mod 18) and v ≥ 21. Say v = 18s + 3 where s ≥ 1.

Notice that (3r+1)+(8s−r+1) = (8s+2r+2), (3r+2)+(4s−r) = (4s+2r+2),

and (3r + 3) + (6s− 2r − 1) = (6s + r + 2) so each of the triples given in the first

column of the following table is, in fact, a difference triple. We need to check that

all numbers 1, 2, . . . , (v − 1)/2 (or their negatives modulo v; see Note 1.7.A) are
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present. Here (v − 1)/2 = 9s + 1.

{3r + 1, 8s− r + 1, 8s + 2r + 2} 1, 4, . . . , 3s− 2; 1 (mod 3)

for 0 ≤ r ≤ s− 1 7s + 2, 7s + 3, . . . , 8s + 1

8s + 2, 8s + 4, . . . , 10s even∗

{3r + 2, 4s− r, 4s + 2r + 2} 2, 5, . . . , 3s− 1; 2 (mod 3)

for 0 ≤ r ≤ s− 1 3s + 1, 3s + 2, . . . , 4s

4s + 2, 4s + 4, . . . , 6s even

{3r + 3, 6s− 2r − 1, 6s + r + 2} 3, 6, . . . , 3s; 0 (mod 3)

for 0 ≤ r ≤ s− 1 4s + 1, 4s + 3, . . . , 6s− 1 odd

6s + 2, 6s + 3, . . . , 7s + 1

{6s + 1} 6s + 1

*Notice that all differences of Heffter’s Difference Problems are between 1 and

(v − 1)/2 = 9s + 1, so any difference larger than 9s + 1 can be replaced with its

negative (mod v), as stated in Note 1.7.A. Hence, if s is even, then the differences

8s + 2, 8s + 4, . . . , 10s correspond to the differences of 8s + 2, 8s + 4, . . . , 9s, v −

(9s + 2), v − (9s + 4), . . . , v − (10s), which equal 8s + 2, 8s + 4, . . . , 9s, 9s + 1, 9s−

1, 9s − 3 . . . 8s + 3 (respectively) or, in order, 8s + 2, 8s + 3, . . . , 9s + 1. If s is

odd, then the differences 8s + 2, 8s + 4, . . . , 10s correspond to the differences of

8s + 2, 8s + 4, . . . , 9s + 1, v − (9s + 3), v − (9s + 5), . . . , v − (10s), which equal

8s + 2, 8s + 4, . . . , 9s + 1, 9s, 9s − 2, 9s − 4, . . . 8s + 3 (respectively) or, in order,

8s + 2, 8s + 3, . . . , 9s + 1. Whether s is even or odd, the differences 8s + 2, 8s +

3, . . . , 9s + 1.

Note A.6. Suppose v ≡ 9 (mod 18) and v ≥ 81. Say v = 18s + 9 where s ≥ 4.

Notice that (3r + 1) + (4s − r + 3) = (4s + 2r + 4), (3r + 2) + (8s − r + 2) =
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(8s + 2r + 4), and (3r + 3) + (6s− 2r + 1) = (6s + r + 4), (2) + (8s + 3) = (8s + 5),

(3) + (8s + 1) = (8s + 4), (5) + (8s + 2) = (8s + 7), (3s− 1) + (3s + 2) = (6s + 1),

and (3s) + (7s + 3) ≡ −(8s + 6) ≡ 10s + 3 (mod 18s + 9), so each of the triples

given in the first column of the following table is, in fact, a difference triple. We

need to check that all numbers 1, 2, . . . , (v− 1)/2 (or their negatives modulo v; see

Note 1.7.A) are present. Here (v − 1)/2 = 9s + 4.

{3r + 1, 4s− r + 3, 4s + 2r + 4} 1, 4, . . . , 3s + 1; 1 (mod 3)

for 0 ≤ r ≤ s 3s + 3, 3s + 4, . . . , 4s + 3

4s + 4, 4s + 6, . . . , 6s + 4 even

{3r + 2, 8s− r + 2, 8s + 2r + 4} 8, 11, . . . , 3s− 4; 2 (mod 3)

for 2 ≤ r ≤ s− 2 7s + 4, 7s + 5, . . . , 8s

8s + 8, 8s + 10, . . . , 10s even∗

{3r + 3, 6s− 2r + 1, 6s + r + 4} 6, 9, . . . , 3s− 3; 0 (mod 3)

for 1 ≤ r ≤ s− 2 4s + 5, 4s + 7, . . . , 6s− 1 odd

6s + 5, 6s + 6, . . . , 7s + 2

{2, 8s + 3, 8s + 5}, {3, 8s + 1, 8s + 4} 2, 8s + 3, 8s + 5, 3, 8s + 1, 8s + 4

{5, 8s + 2, 8s + 7}, {3s− 1, 3s + 2, 6s + 1} 5, 8s + 2, 8s + 7, 3s− 1, 3s + 2, 6s + 1

{3s, 7s + 3, 8s + 6}, {6s + 3} 3s, 7s + 3, 8s + 6, 6s + 3

*Notice that all differences of Heffter’s Difference Problems are between 1 and

(v − 1)/2 = 9s + 4, so any difference larger than 9s + 4 can be replaced with its

negative (mod v), as stated in Note 1.7.A. Hence, if s is even, then the differences

8s + 8, 8s + 10, . . . , 10s correspond to the differences of 8s + 8, 8s + 10, . . . , 9s +

4, v−(9s+6), v−(9s+8), . . . , v−(10s), which equal 8s+8, 8s+10, . . . , 9s+4, 9s+

3, 9s + 1, 9s − 1 . . . 8s + 9 (respectively) or, in order, 8s + 8, 8s + 9, . . . , 9s + 4. If
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s is odd, then the differences 8s + 8, 8s + 10, . . . , 10s correspond to the differences

of 8s + 8, 8s + 10, . . . , 9s + 3, v − (9s + 5), v − (9s + 7), . . . , v − (10s), which equal

8s + 8, 8s + 10, . . . , 9s + 3, 9s + 4, 9s + 2, 9s, . . . 8s + 9 (respectively) or, in order,

8s + 8, 8s + 9, . . . , 9s + 4. Whether s is even or odd, the differences 8s + 8, 8s +

9, . . . , 9s + 4.

Note A.7. Suppose v ≡ 15 (mod 18) and v ≥ 33. Say v = 18s + 15 where s ≥ 1.

Notice that (3r+1)+(4s−r+3) = (4s+2r+4), (3r+2)+(8s−r+6) = (8s+2r+8),

and (3r + 3) + (6s− 2r + 3) = (6s + r + 6) so each of the triples given in the first

column of the following table is, in fact, a difference triple. We need to check that

all numbers 1, 2, . . . , (v − 1)/2 (or their negatives modulo v; see Note 1.7.A) are

present. Here (v − 1)/2 = 9s + 7.

{3r + 1, 4s− r + 3, 4s + 2r + 4} 1, 4, . . . , 3s + 1; 1 (mod 3)

for 0 ≤ r ≤ s 3s + 3, 3s + 4, . . . , 4s + 3

4s + 4, 4s + 6, . . . , 6s + 4 even

{3r + 2, 8s− r + 6, 8s + 2r + 8} 2, 5, . . . , 3s + 2; 2 (mod 3)

for 0 ≤ r ≤ s 7s + 6, 7s + 7, . . . , 8s + 6

8s + 8, 8s + 10, . . . , 10s + 8 even∗

{3r + 3, 6s− 2r + 3, 6s + r + 6} 3, 6, . . . , 3s; 0 (mod 3)

for 0 ≤ r ≤ s− 1 4s + 5, 4s + 7, . . . , 6s + 3 odd

6s + 6, 6s + 7, . . . , 7s + 5

{6s + 5} 6s + 5

*Notice that all differences of Heffter’s Difference Problems are between 1 and

(v − 1)/2 = 9s + 7, so any difference larger than 9s + 7 can be replaced with its

negative (mod v), as stated in Note 1.7.A. Hence, if s is even, then the differences
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8s+8, 8s+10, . . . , 10s+8 correspond to the differences of 8s+8, 8s+10, . . . , 9s+

6, v− (9s+8), v− (9s+10), . . . , v− (10s+8), which equal 8s+8, 8s+10, . . . , 9s+

6, 9s+7, 9s+5, 9s+3 . . . 8s+7 (respectively) or, in order, 8s+7, 8s+8, . . . , 9s+7.

If s is odd, then the differences 8s + 8, 8s + 10, . . . , 10s + 8 correspond to the

differences of 8s+8, 8s+10, . . . , 9s+7, v− (9s+9), v− (9s+11), . . . , v− (10s+8),

which equal 8s + 8, 8s + 10, . . . , 9s + 7, 9s + 6, 9s + 4, . . . 8s + 7 (respectively) or,

in order, 8s + 7, 8s + 8, . . . , 9s + 7. Whether s is even or odd, the differences

8s + 7, 8s + 8, . . . , 9s + 7.

Note. We now have a solution to Heffter’s First Difference Problem, which applies

to v ≡ 1 (mod 6), given in Note A.1 (for v = 7, v = 13, and v = 19), Note A.2

(for v ≡ 1 (mod 18) and v ≥ 37), Note A.3 (for v ≡ 7 (mod 18) and v ≥ 25),

and Note A.4 (for v ≡ 13 (mod 18) and v ≥ 31). We have a solution to Heffter’s

Second Difference Problem, which applied to v ≡ 3 (mod 6) (and v 6= 9), given in

Note A.1 (for v = 15, v = 27, v = 45, and v = 63), Note A.5 (for v ≡ 3 (mod 18)

and v ≥ 21), Note A.6 (for v ≡ 9 (mod 18) and v ≥ 81), and Note A.7 (for v ≡ 15

(mod 18) and v ≥ 33). As we’ll see in the proof of the the necessary and sufficient

conditions for the existence of a cyclic Steiner triple system (in Theorem 1.7.6), all

we need to do is convert the difference triples given by Heffter’s Difference Problems

into base blocks (along with a short orbit block in the case that v ≡ 3 (mod 6),

v 6= 9) and then to cycle these around with the appropriate cyclic automorphism.

These steps can be followed to give a Steiner triple system of any order v (except

v = 9) simply in terms of parameter v.
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