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Chapter 10. Partial Differential

Equations and Fourier Series

Section 10.1. Separation of Variables; Heat Conduction

Note. In the area of PDEs, there are three basic equations which are studied:

1. the heat equation,

2. the wave equation, and

3. the potential equation.

Fourier series are often used in the solution of these equations. We will derive the

heat equation and try to give some idea of why Fourier series arise.

Note. The following discussion of the heat equation is based on Appendix A (page

572). Suppose two parallel plates are separated by a distance d. Suppose the plates

have temperatures T1 and T2. Then according to Newton’s Law of Cooling, the

amount of heat transferred from the warmer to the colder plate is proportional to

the area of the plates (say A), the temperature difference |T2 − T1| , and inversely

proportional to d:

amount of heat per unit time = κA|T2 − T1|/d

where κ is called the thermal conductivity of the medium between the plates.
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Note. We want to consider the distribution of heat in a thin rod (this will give

us the “One-Dimensional Heat Equation”). Suppose we have such a rod and it lies

along the x-axis. Also suppose that the rod is perfectly insulated around the sides

(no heat passes through them). So the temperature of the rod can be considered

as a function of x and time t. Say, temp = u = u(x, y). Also suppose the ends of

the rod are at x = 0 and x = `.

Note. Consider some point x = x0 in the rod. By Newton’s Law of Cooling, the

heat flow through this point (or heat flux) is

H(x0, t) = − lim
d→0

κA
u(x0 + d/2, t) − u(x0 − d/2, t)

d
= −κA

∂u

∂x

∣

∣

∣

∣

(x0,t)

= −κAux(x0, t).

Similarly, at the point x = x0 + ∆x, the heat flux is

H(x0 + ∆x, t) = −κAux(x0 + ∆x, t).

So in the segment of the rod from x0 to x0 + ∆x the net heat flow rate is

Q = H(x0, t) − H(x0 + ∆x, t) = −κA (ux(xo, t) − ux(x0 + ∆x, t))

and the amount of heat entering in time ∆t is

Q∆t = κA (ux(x0 + ∆x, t) − ux(x0, t)) ∆t. (∗)

Now, the change in temperature ∆u in the time interval ∆t is proportional to the

amount of heat Q∆t and inversely proportional to the mass ∆m:

∆u =
1

s

Q∆t

∆m
=

1

s

Q∆t

ρA∆x

where the constant of proportionality s is called the specific heat of the rod and ρ

is the density.
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Note. The change in temperature ∆u of the ∆x segment must equal the temper-

ature change at some point in the segment (by the Mean Value Theorem). Say at

x = x0 + θ∆x where θ ∈ (0, 1):

∆u − u(x0 + θ∆x, t + ∆t) − u(x0 + θ∆x, t) =
Q∆t

sρA∆x

or

A∆t = (u(x0 + θ∆x, t + ∆t) − u(x0 + θ∆x, t)) sρA∆x. (∗∗)

From (∗) and (∗∗)

κA (ux(x0 + ∆x, t) − u(x0, t)) ∆t = sρA (u)x0 + θ∆x, t + ∆t) − u(c0 + θx, t)) ∆x.

Dividing by ∆x∆t:

κA
ux(x0 + ∆x, t) − u(x0, t)

∆x
= sρA

u(x0 + θ∆x, t + ∆t) − u(x0 + θ∆x, t)

∆t
.

Now letting ∆x → 0 and ∆t → 0 we get

κAuxx(x0, t) = sρAut(x0, t)

or
κ

sρ
uxx(x0, t) = α2uxx(x0, t) = ut(x0, t).

This is valid for each point x0 ∈ (0, `) so we want

α2∂2u

∂x2
=

∂u

∂t
for x ∈ (0, `), t > 0.

This is the one dimensional heat equation.
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Note. We now want to solve the heat equation given certain initial conditions and

boundary conditions. Suppose the temperature distribution is initially given by

the function f(x) for x ∈ [0, `]. Also suppose the ends of the rod heave constant

temperatures (we will use a temperature of 0 for both ends; this is without a loss

of generality, as we will see). So we have:



















PDE: ∂2u
∂x2 = ∂u

∂t
for x ∈ (0, `), t > 0

IC: u(x, 0) = f(x) for x ∈ [0, `]

BC: u(0, t(= 0, u(`, t) = 0 for t > 0.

We will apply the method of separation of variables to solve this. We seek solutions

of the form u(x, t) = X(x)T (t). This PDE becomes α2X ′′T = XT ′ where primes

represent ordinary derivatives. This rearranges to become

X ′′

X
=

1

α2

T ′

T
.

Since the left hand side is a function of x alone and the right hand side is a function

of t above, in order to be equal, both sides must simply be constant. So let

X ′′

X
=

1

α2

T ′

T
= −σ.

We get






X ′′ + σX = 0

T ′ + α2σT = 0.

Now, solutions to these DEs yield the desired function u(x, t): u(x, t) = X(x)T (t).

We need u(0, t) = X(0)T (t) = 0. So we need either T (t) = 0 (which means

u(x, t) = 0, which is bad!) or X(0) = 0. Similarly we need X(`) = 0. So we are
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lead to the two-point boundary value problem:


















X ′′ + σX = 0

X(0) = 0

X(`) = 0.

With σ ≤ 0 this only has the trivial solution X(x) = 0 (see page 515). So, suppose

σ = λ2 > 0. The general solution to X ′′ + λ2X = 0 is

X(x) = k1 cos λx + k2 sin λx.

So if we require X(0) = 0, we may take k1 = 0. With X(`) = 0, we need X(`) =

k2 sin λ` = 0. We don’t want k2 = 0 (this would give X(x) = 0), so we choose λ`nπ

where n = 1, 2, 3, . . .. That is, λ = nπ/` and so σ = n2π2/`2 where n = 1, 2, 3, . . ..

So we have X(x) = k3 sin(nπx/`). Returning now to T :

T ′ + α2σT = 0 or T ′ +
n2π2α2

`2
T = 0

which gives

T (t) = k4e
−n2π2α2t/`2.

So we have the following candidates for u:

un(x, t) = kne
−n2π2α2t/`2 sin(nπx/`) for n = 1, 2, 3, . . . .

Each of the un satisfies the PDE and the boundary conditions. In fact, linear

combinations of the un’s satisfy these (the PDE is linear and, from the boundary

conditions, homogeneous). Therefore, we let

u(x, t) =
∞

∑

n=1

cnun(x, t) =
∞

∑

n=1

cne
−n2π2α2t/`2 sin(nπx/`).
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The initial condition then becomes:

u(x, 0) =
∞

∑

n=1

cn sin(nπx/`) = f(x).

So finding a solution to the PDE with BC and IC becomes the problem of expressing

the function f(x) in terms of an infinite sine series.
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