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Section 6.2. Solutions of Initial Value Problems

Note. In this section we will use the Laplace transform to solve IVPs for linear

DEs with constant coefficients.

Theorem 6.2.1. Suppose f and f ′ are continuous on any interval 0 ≤ t ≤ A and

that f(t) is of exponential order. Then L{f(t)} exists for s > a (see the definition

of exponential order) and

L{f ′(t)} = sL{f(t)} − f(0).

Proof. We have

∫

A

0

e−stf ′(t) dt =

(

e−stf(t) + s

∫

e−stf(t) dt

)∣

∣

∣

∣

t=A

t=0

by integration by parts with u = e−st and dv = f ′(t) dt

= e−sAf(A) − f(0) + s

∫

A

0

d−stf(t) dt.

Letting A → ∞ gives L{f ′(t)} = −f(0) + sL{f(t)} since e−sAf(A) → 0 when

s > a.

Note. A corollary to Theorem 6.2.1 which can be proved by Mathematical Induc-

tion is the following.
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Corollary. Suppose f, f ′, . . . , f (n) are continuous on any interval 0 ≤ t ≤ A.

Suppose that f, f ′, . . . , f (n−1) are of exponential order. Then L{f (n)(t)} exists for

s > a and is

L{f (n)(t)} = snL{f(t)} − sn−1f(0) − sn−2f ′(0) = · · · − sf (n−2)(0) − f (n−1)(0).

Example. Page 289 Number 12. Use Laplace transforms to solve the IVP:


















y′′ + 3y′ + 2y = 0

y(0) = 1

y′(0) = 0.

Solution. By the linearity of the Laplace transform, we have

{y′′} + 3L{y′} + 2L{y} = L{0}.

This implies, by Corollary,

(

s2L{y} − sy(0)− y′(0)
)

+ 3 (sL{y} − y(0)) + 2L{y} = 0.

Let Y = L{y} and then we have

s2Y − s − 3sY − 3 + 2Y = 0 or Y (s2 + 3s + 2) = s + 3

or

Y =
s + 3

s2 + 3s + 2
=

s + 3

(s + 2)(s + 1)
=

−1

s + 2
+

2

s + 1
.

So the solution is y = L−1{Y } = L−1

{

−
1

s + 2
+

2

s + 1

}

. Notice that

L{e−2t} =

∫ ∞

0

e−ste−2t dt =

∫ ∞

0

e−t(s+2) dt =
1

s + 2
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and similarly L{e−t} = 1/(s + 1). So

L−1

{

−
1

s + 2
+

2

s + 1

}

= −e2t + 2et.

Note. Notice that we convert the DE into an algebraic equation which we solve.

We (unfortunately) then have to calculate an inverse Laplace transform.

Example. Page 290 Number 28. Suppose F (s) =

∫ ∞

0

e−stf(t) dt.

(a) Show that F ′(s) = L{−tf(t)}.

Solution. We have

d

ds
[F (s)] =

d

ds

[
∫ ∞

0

e−stf(t) dt

]

=

∫ ∞

0

d

ds

[

e−stf(t)
]

dt

=

∫ ∞

0

−te−stf(t) dt =

∫ ∞

0

e−st(−tf(t)) dt = L{−tf(t)}.

(b) Show that F (n)(s) = L{(−t)f(t)}.

Solution. We will demonstrate this by mathematical induction. The result is

true for n = 1 by part (a). Now suppose it is true for n = k; that is, F (k)(s) =

L{(−t)kf(t)}. We must show that this implies the result for n = k + 1:

F (k+1)(s) =
d

ds
[F (k)(s)] =

d

ds
[L{(−t)kf(t)} =

d

ds

[
∫ ∞

0

e−st(−t)kf(t) dt

]

=

∫ ∞

0

d

ds
[e−st(−t)kf(t) dt] =

∫ ∞

0

e−st(−t)k+1f(t) dt = L{(−t)k+1f(t)}.

Therefore, by Mathematical Induction, the result follows.
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Example. Page 290 Number 30. Evaluate L{t2 sin bt}.

Solution. With n = 2 in Number 28(b),

L{t2 sin bt} =
d2

ds2
[L{sin bt} =

d2

ds2

[

b

s2 + b2

]

=
d

ds

[

−2sb

(s2 + b2)2

]

=
6sb2 − 2b3

(s2 + b2)3
.

Notice that we have exchanged calculating Laplace transforms of “known” func-

tions times powers of t for differentiation of the Laplace transform of the “known”

functions.
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