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Section 7.4. Basic Theory of Systems of

First Order Linear Equations

Note. We convert a system of first order linear DEs into matrix form and give

some theoretical results concerning solutions.

Note. A system of n first order linear DEs:

x′

1 = p11(t)x1 + p12(t)x2 + · · · + p1n(t)xn + g1(t)

x′

2 = p21(t)x1 + p22(t)x2 + · · · + p2n(t)xn + g2(t)

...

x′

n
= pn1(t)x1 + pn2(t)x2 + · · · + pnn(t)xn + gn(t)

can be written in matrix form as

~x′ = P (t)~x + ~g(t).

We have seen that we can convert an nth order linear DE with constant coefficients

into a system of n first order linear DEs with constant coefficients. We solved this

former type of DE in introduction to Differential Equations; see Chapters 3 and 4

of my online notes at

http://faculty.etsu.edu/gardnerr/Differential-Equations/

DE-Ross4-notes.htm.

The methods we use to solve the latter type of system of DEs will be similar to the

method seen in introductory Differential Equations (MATH 2120).
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Theorem 7.4.1. Principle of Superposition (for Systems).

If ~x (1) and ~x (2) are solutions of

~x′ = P (t)~x

then any linear combination c1~x
(1) + c2~x

(2) is also a solution.

Theorem 7.4.2. If ~x (1), ~x (2), . . . , ~x (n) are linearly independent solutions of

~x′ = P (t)~x

for each point in α < t < β, then each solution ~x = ~ϕ(t) of the DE can be expressed

as a linear combination of the ~x (i)’s:

~ϕ(t) = c1~x
(1)(t) + c2~x

(2)(t) + · · · + cn~x
(n)(t)

in exactly one way.

Definition. The general solution of ~x′ = P (t)~x is

c1~x
(1)(t) + c2~x

(2)(t) + · · · + cn~x
(n)(t)

where ci are arbitrary and ~x (i) are as described in Theorem 7.4.2. Any set of n

linearly independent solutions to the DE (on an interval α < t < β) is a fundamental

set of solutions (for that interval).

Definition. For a set of n solutions ~x (i), i = 1, 2, . . . , n of the system ~x′ = P (t)~x,

from the matrix ~X(t) by making column i of ~X(t) as ~x (i). Then the Wronskian of

these n solutions is

W [~x (1), ~x (2), . . . , ~x (n)] = det( ~X).
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Note. The columns of a matrix are linearly independent if and only if the de-

terminant of the matrix is nonzero (for all values of t in a given interval). So

~x (1), ~x (2), . . . , ~x (n) is a fundamental set of solutions to ~x′ = P (t)~x in the interval

α < t < β if and only if the Wronskian is nonzero for α < t < β.

Theorem 7.4.3. If ~x (1), ~x (2), . . . , ~x (n) are solutions of ~x′ = P (t)~x in the interval

α < t < β then in this interval, the Wronskian W [~x (1), ~x (2), . . . , ~x (n)] is either

identically zero or never zero in this interval.

Note. From Theorem 7.4.3, to test ~x (1), ~x (2), . . . , ~x (n) as a fundamental set of

solutions to ~x′ = P (t)~x in the interval α < t < β, we need only check the Wronskian

at one point, say t0, of the interval (α, β).
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