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Section 7.5. Homogeneous Linear Systems

with Constant Coefhicients

Note. We now use matrix techniques to solve particular IVPs.

Note. Recall that the solution to the first order homogeneous linear IVP
' =ax
z(0) = zg

is x = xpe®. So, in solving the linear homogeneous system of first order DEs with
constant coefficients
7 = A%

Rt

we seek a solution of the form 7 = 56 where 5 is a constant vector. We have

7 = £Eef! and the DE becomes
EReMT = Afel or RE = A€ or AE— RE=0 or (A— RI)Q?: 0.

So we have such a solution if R is an eigenvalue of A and £ is an eigenvector.

Example. Page 356 Number 2. Consider

1 -2
— —
r = X.

3 —4

Find the general solution and draw trajectories in the 1, xo-plane of solutions.



7.5. Homogeneous Linear Systems with Constant Coefficients 2

—

Solution. From the note above, we need (A — RZ)¢ = 0. So consider

1-R -2
3 —4-R

~(1-R)(4+R)+6=R*+3R+2=(R+2)(R+1),

so we must have R = —2 or R = —1. With R = —2, equation (A — (—2)1)5: 0

has augmented matrix

1—(-2) —2 0 3 =210 | Bezfa-Ba | 3 =210
3 —4-(=2)|0 3 20 0 o0lo]|
and we choose the eigenvector and solution corresponding to R = —2 of
—2t
g — 21 nd 20 — e 2 g 2e
3 3e 2
With R = —1, equation (A — 5 0 has augmented matrix
1—(-1) — 2 —210 | BB (3/2)B1 | 2 210
3 —4- 3 —30 0 olo|
and we choose the eigenvector and solution corresponding to R = —1 of
—t
£o) _ Ll ond 70 = etf@ | ©
1 et

Notice that the Wronskian is

2e72t et
WE, 7] = = (2e7)(e™) = ()3 H) = —e ¥ £ 0,
36—2t e—t

so £ and £ are linearly independent. So the general solution is

26—2t —t

:z?:cl + Co

e et
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L1 L1

. then z; = 2¢2 and x5 = 3e 2. With 7® = :
I9 T

If we let 71 =

x1 = T3 = e '. So in the 1, zo-plane we have (as t increases):

N\
7\

A linear combination of £ and £®, say 7 = ;21 4 ¢, 7

B Fe 20

X1

2) can be represented

as a point in the 1, ro-plane. We can use £ an dZ® to illustrate the behavior
of a solution ¥ as time increases. Notice that all trajectories approach 0, but
trajectories along () approach 0 faster (due to the e term) than trajectories
along Z?) (which involve the term e™*). This is not reflected in the diagram above.

Consider the following more detailed diagram for a different problem.

o]
]

x“}(t)
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This diagram (Figure 7.5.4(a) from the 10th edition of DePrima and Boyce) reflects

trajectories for different values of ¢; and cy. These trajectories are for

1 —V2
7=c7W 4+ 7® = et + g M
V2 1

Notice that in this case the #® “component” of # approaches 0 faster than the

#(1 component and this is reflected in the diagram.

Note. If ¥/ = AZ where A is Hermitian, then the eigenvalues of A are real and the

eigenvalues are linearly independent. Therefore the general solution to the DE is

7 cag(l)eth + ng(z)eRQt 4t Cng(n)eRnt

—

where Ry, Rs, ..., R, are the eigenvalues and 5 W e@ . ,5 (") the corresponding

eigenvectors.

Example. Page 358 Number 26. Consider the equation
ay” + by’ +cy =0,

where a, b, and ¢ are constants with a # 0. Transform this into a system of first
order equations and find the system 77 = AZ. Show that the eigenvalues are the

roots of the auxiliary equation.

Solution. Let

/
rn =y Ty = T2
so that !

o =1y xh = —(1/a)xy — (c/a)m.
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With A as required,

- 1
det(A — \7) = = —A—b/a—\)+c
—c/a —b/a— A

= b\a+ N+ c/a = (1/a)(ar* + bX\ +¢).

So A is an eigenvalue of A if and only if it satisfies the auxiliary equation for the

given DE.
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