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Section 7.6. Complex Eigenvalues

Note. In this section we consider the case ~x ′ = A~x where the eigenvalues of A are

non-repeating, but not necessarily real. We will assume that A is real.

Theorem. If A is real and R1 is an eigenvalue of A where R1 = λ + iµ and ~ξ (1)

is the corresponding eigenvector then R2 = λ − iµ is also an eigenvalue and is

corresponding eigenvector is ~ξ( 2) = ~ξ (1).

Note. Recall that Cauchy’s formula states

ex+iy = exeiy = ex(cos y + i sin y).

Note. If R1 = λ + iµ is an eigenvalue of A and ~ξ (1) = ~a + i~b is the eigenvector

then a solution to ~x ′ − A~x is

~x (1) = ~ξ (1)eR1t = (~a + i~b)e(λ+iµ)t = (~a + i~b)eλt(cos µt + i sin µt)

= eλt(~a cos µt −~b sin µt) + ieλt(~a sin µt +~b cos µt).

For R2 = λ − iµ and ~ξ (2) = ~a − i~b we find another solution is

~x (2) = eλt(~a cos µt −~b sin µt) − ieλt(~a sin µt +~b cos µt) = ~x (1).

We can show that the real and imaginary parts of ~x (1) (and ~x (2)) are linearly

independent. Therefore we have the following.
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Theorem. If A is real, and R1 = λ+iµ and R2 = λ−iµ are eigenvalues with corre-

sponding eigenvectors ~ξ (1) = ~a+ i~b and ~ξ (2) = ~a− i~b then two linearly independent

solutions to ~x ′ = A~x are

~u(t) = eλt(~a cos µt −~b sin µt) and ~v(t) = eλt(~a sin µt +~b cos µt).

Example. Page 364 Number 2. Consider ~x ′ =





−1 −4

1 −1



 ~x. Express the general

solution in terms of real-valued functions. Also draw a direction field, sketch a few

of the trajectories and describe the behavior of the solutions as t → −∞.

Solution. We need the eigenvalues. Consider

det(A − RI) =

∣

∣

∣

∣

∣

∣

−1 − R −4

1 −1 − R

∣

∣

∣

∣

∣

∣

= (−1 − R)2 + 4 = R2 + 2r + 5,

and we find from R2+2R+5 = 0 that the eigenvalues are R =
−2 ±

√
−16

2
= −1±

2i. So we take λ = −1 and µ = 2, R1 = λ+iµ = −1+2i, and R2 = λ−iµ = −1−2i.

For eigenvalue R1 = −1+2i we find a corresponding eigenvector ~x (1) by considering

(A − R1I)~x (1) = ~0:




−1 − (−1 + 2i) −4 0

1 −1 − (−1 + 2i) 0



 =





−2i −4 0

1 −2i 0





R1↔R2

˜





1 −2i 0

−2i −4 0





R2→R2+2iR1

˜





1 −2i 0

0 0 0



 ,

so we need
x1 − 2ix2 = 0

0 = 0
or

x1 = 2ix2

x2 = x2

or with t = x2 as a free variable,
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x1 = 2it

x2 = t.
We can take (with t = 1)

~ξ (1) =





2i

1



 =





0

1



 + i





2

0



 = ~a + i~b.

We can find ~ξ (2) by conjugation of ~ξ (1):

~ξ (2) = ~ξ (1) =





0

1



 − i





2

0



 = ~a − i~b.

So the general solution is

~x = c1e
λ
(

~a cos µt −~b sin µt)
)

+ c2e
λ
(

(~a sin µt +~b cos µt)
)

= c1e
−t









0

1



 cos 2t −





2

0



 sin 2t



 + c2e
−t









0

1



 sin 2t +





2

0



 cos 2t





= c1





−2e−t sin 2t

e−t cos 2t



 + c2





2e−t cos 2t

e−t sin 2t



 .

Since λ < 0, we see that all trajectories approach 0. Because of the trig func-

tions, they spiral in counterclockwise. The following image is based on material in

http://www.math.nus.edu.sg/ matysh/ma3220/chap9.pdf.
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Example. Page 365 Number 14(a). The electric circuit shown below is described

by the system of differential equations

d

dt





I

V



 =





0 1
L

− 1
C

− 1
RC









I

V





where I is the current through the inductor and V is the voltage drop across the

capacitor. Show that the eigenvalues of the coefficient matrix are real and different

if L > 4R2C; show they are complex conjugates if L < 4R2C.

Solution. For eigenvalues we consider:

det(A − λI) =

∣

∣

∣

∣

∣

∣

0 1
L

− 1
C

− 1
RC

∣

∣

∣

∣

∣

∣

= −λ

(

− 1

RC
− λ

)

+
1

CL
= λ2 +

1

RC
+

1

CL
.

Setting this equal to 0 we find the eigenvalues

λ =
− 1

RC
±

√

(

1
RC

)2 − 4
CL

2
.

So the eigenvalues are real and different if

(

1

RC

)2

−
4

CL
> 0 or

1

R2C2
−

4

CL
> 0

or
1

R2C2
>

4

CL
or R2C2 < CL

4 or 4R2C < L, as claimed. The eigenvalues are

complex conjugates if
1

R2C2
−

4

CL
< 0 or if 4R2C > L.

Revised: 3/12/2019


