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Section 7.6. Complex Eigenvalues

Note. In this section we consider the case ¥’ = AZ where the eigenvalues of A are

non-repeating, but not necessarily real. We will assume that A is real.

Theorem. If A is real and R; is an eigenvalue of A where Ry = A + i and 5 (1)

is the corresponding eigenvector then Ry = A\ — iu is also an eigenvalue and is

—,

corresponding eigenvector is £(2) = £,

Note. Recall that Cauchy’s formula states

" = " = ¢"(cosy + isiny).

Note. If Ry = A\ + iu is an eigenvalue of A and 5(1) = @+ ib is the eigenvector

then a solution to ¥’ — AZ is
7 = gWelit — (G 4 ib)eP M = (@ + ib)e (cos ut + i sin pt)

— (@ cos pt — bsin put) + ie (@ sin pt + beos ut).

For Ry = A —ip and 5 (2) = @ — ib we find another solution is

M (@ sin pt + beos ut) = 20,

7@ = M (G cos ut — bsin pt) — ie

We can show that the real and imaginary parts of £ (and #)) are linearly

independent. Therefore we have the following.
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Theorem. If Aisreal, and Ry = A\+ip and Ry = A\—1u are eigenvalues with corre-
sponding eigenvectors € = g+ ib and £ ® = @ — ib then two linearly independent

solutions to ¥’ = AZ are

T(t) = eM(@cos put — bsin ut) and F(t) = eM(@sin pt + bcos pt).
-1 —4
Example. Page 364 Number 2. Consider ' = Z. Express the general
1 -1

solution in terms of real-valued functions. Also draw a direction field, sketch a few

of the trajectories and describe the behavior of the solutions as ¢t — —oo.

Solution. We need the eigenvalues. Consider

~1-R —4 ) )
det(A — RT) = =(—1—R)*+4=R*+2r+5,
1 —-1-R

=—-1+

—2++v/—16
2

and we find from R?>+2R+5 = 0 that the eigenvalues are R =
2i. Sowetake \= —land p =2, Ry = A\ +ipu = —1+2i, and Ry = A\—tpu = —1—24.
For eigenvalue R; = —1+2i we find a corresponding eigenvector (1) by considering

(A— R T)zM = 0:

—1— (=14 29) —4 0 —2i —4 |0 | Biche
1 —1—(=142i)|0 1 =2¢{0
1 =200 | Bezfat2ily | 1 —2¢ |0
~2i —4 |0 0 0 0|
1 — 2y = 0 T, = 21T , .
so we need or or with ¢ = x9 as a free variable,

0 =20 Ty — I9
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r = 21t
We can take (with ¢t = 1)
Ty — t.

We can find €@ by conjugation of &1
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So the general solution is

7= ce (c?cos (it — bsin ,ut)) + o€ ((c?sin (it + b cos ,ut))

[0 2| . (1o
= e cos 2t — sin 2t | 4+ coe sin 2t + cos 2t
1 0 1 0
—2e~tsin 2t 2¢ ! cos 2t
= +
e ! cos 2t e !sin 2t

Since A < 0, we see that all trajectories approach 0. Because of the trig func-
tions, they spiral in counterclockwise. The following image is based on material in

http://www.math.nus.edu.sg/ matysh/ma3220/chap9.pdf.
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Example. Page 365 Number 14(a). The electric circuit shown below is described

by the system of differential equations

1
d |1 o L ||z

dt 1 1
1% -5 —Fo 1%
where [ is the current through the inductor and V' is the voltage drop across the
capacitor. Show that the eigenvalues of the coefficient matrix are real and different

if L > 4R%C'; show they are complex conjugates if L < 4R*C.
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Solution. For eigenvalues we consider:
0 1 1 1 11
det(A — \T) = Lol —=—= =2 — =N — 4 —.
et( =, (RC >+CL TReTCL

1 _ 1
C ~RC

Setting this equal to 0 we find the eigenvalues

2
—re V() —ar

2
So the ei 1 1 and different if LY 4>0 L 4>O
o the eigenvalues are real and different if (| — | — —— or —
semvart RC) ~CL RC? - COL
1 4
or 200 > L or R?C? < % or 4R?C' < L, as claimed. The eigenvalues are

< 0 or if 4R?C > L.

1
complex conjugates if e el
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