## Section 7.6. Complex Eigenvalues

Note. In this section we consider the case  $\vec{x}' = A\vec{x}$  where the eigenvalues of A are non-repeating, but not necessarily real. We will assume that A is real.

**Theorem.** If A is real and  $R_1$  is an eigenvalue of A where  $R_1 = \lambda + i\mu$  and  $\vec{\xi}^{(1)}$  is the corresponding eigenvector then  $R_2 = \lambda - i\mu$  is also an eigenvalue and is corresponding eigenvector is  $\vec{\xi}^{(2)} = \vec{\xi}^{(1)}$ .

Note. Recall that Cauchy's formula states

$$e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y).$$

**Note.** If  $R_1 = \lambda + i\mu$  is an eigenvalue of A and  $\vec{\xi}^{(1)} = \vec{a} + i\vec{b}$  is the eigenvector then a solution to  $\vec{x}' - A\vec{x}$  is

$$\vec{x}^{(1)} = \vec{\xi}^{(1)} e^{R_1 t} = (\vec{a} + i\vec{b})e^{(\lambda + i\mu)t} = (\vec{a} + i\vec{b})e^{\lambda t}(\cos\mu t + i\sin\mu t)$$
$$= e^{\lambda t}(\vec{a}\cos\mu t - \vec{b}\sin\mu t) + ie^{\lambda t}(\vec{a}\sin\mu t + \vec{b}\cos\mu t).$$

For  $R_2 = \lambda - i\mu$  and  $\vec{\xi}^{(2)} = \vec{a} - i\vec{b}$  we find another solution is

$$\vec{x}^{(2)} = e^{\lambda t} (\vec{a} \cos \mu t - \vec{b} \sin \mu t) - i e^{\lambda t} (\vec{a} \sin \mu t + \vec{b} \cos \mu t) = \overline{\vec{x}^{(1)}}.$$

We can show that the real and imaginary parts of  $\vec{x}^{(1)}$  (and  $\vec{x}^{(2)}$ ) are linearly independent. Therefore we have the following.

**Theorem.** If A is real, and  $R_1 = \lambda + i\mu$  and  $R_2 = \lambda - i\mu$  are eigenvalues with corresponding eigenvectors  $\vec{\xi}^{(1)} = \vec{a} + i\vec{b}$  and  $\vec{\xi}^{(2)} = \vec{a} - i\vec{b}$  then two linearly independent solutions to  $\vec{x}' = A\vec{x}$  are

$$\vec{u}(t) = e^{\lambda t} (\vec{a} \cos \mu t - \vec{b} \sin \mu t)$$
 and  $\vec{v}(t) = e^{\lambda t} (\vec{a} \sin \mu t + \vec{b} \cos \mu t).$ 

**Example.** Page 364 Number 2. Consider  $\vec{x}' = \begin{bmatrix} -1 & -4 \\ 1 & -1 \end{bmatrix} \vec{x}$ . Express the general solution in terms of real-valued functions. Also draw a direction field, sketch a few of the trajectories and describe the behavior of the solutions as  $t \to -\infty$ .

Solution. We need the eigenvalues. Consider

$$\det(A - R\mathcal{I}) = \begin{vmatrix} -1 - R & -4 \\ 1 & -1 - R \end{vmatrix} = (-1 - R)^2 + 4 = R^2 + 2r + 5,$$

and we find from  $R^2 + 2R + 5 = 0$  that the eigenvalues are  $R = \frac{-2 \pm \sqrt{-16}}{2} = -1 \pm 2i$ . So we take  $\lambda = -1$  and  $\mu = 2$ ,  $R_1 = \lambda + i\mu = -1 + 2i$ , and  $R_2 = \lambda - i\mu = -1 - 2i$ . For eigenvalue  $R_1 = -1 + 2i$  we find a corresponding eigenvector  $\vec{x}^{(1)}$  by considering  $(A - R_1 \mathcal{I})\vec{x}^{(1)} = \vec{0}$ :

$$\begin{bmatrix} -1 - (-1+2i) & -4 & 0 \\ 1 & -1 - (-1+2i) & 0 \end{bmatrix} = \begin{bmatrix} -2i & -4 & 0 \\ 1 & -2i & 0 \end{bmatrix} \stackrel{R_1 \leftrightarrow R_2}{\underbrace{ \begin{array}{c} 1 & -2i & 0 \\ -2i & -4 & 0 \end{bmatrix}}} \stackrel{R_2 \rightarrow R_2 + 2iR_1}{\underbrace{ \begin{array}{c} 1 & -2i & 0 \\ 0 & 0 & 0 \end{bmatrix}}},$$

$$x_1 = 2it$$
  
We can take (with  $t = 1$ )  
 $x_2 = t$ .

$$\vec{\xi}^{(1)} = \begin{bmatrix} 2i\\1 \end{bmatrix} = \begin{bmatrix} 0\\1 \end{bmatrix} + i \begin{bmatrix} 2\\0 \end{bmatrix} = \vec{a} + i\vec{b}.$$

We can find  $\vec{\xi}^{(2)}$  by conjugation of  $\vec{\xi}^{(1)}$ :

$$\vec{\xi}^{(2)} = \overline{\vec{\xi}^{(1)}} = \begin{bmatrix} 0\\1 \end{bmatrix} - i \begin{bmatrix} 2\\0 \end{bmatrix} = \vec{a} - i\vec{b}.$$

So the general solution is

$$\vec{x} = c_1 e^{\lambda} \left( \vec{a} \cos \mu t - \vec{b} \sin \mu t \right) + c_2 e^{\lambda} \left( (\vec{a} \sin \mu t + \vec{b} \cos \mu t) \right)$$
$$= c_1 e^{-t} \left( \begin{bmatrix} 0\\1 \end{bmatrix} \cos 2t - \begin{bmatrix} 2\\0 \end{bmatrix} \sin 2t \right) + c_2 e^{-t} \left( \begin{bmatrix} 0\\1 \end{bmatrix} \sin 2t + \begin{bmatrix} 2\\0 \end{bmatrix} \cos 2t \right)$$
$$= c_1 \begin{bmatrix} -2e^{-t} \sin 2t\\e^{-t} \cos 2t \end{bmatrix} + c_2 \begin{bmatrix} 2e^{-t} \cos 2t\\e^{-t} \sin 2t \end{bmatrix}.$$

Since  $\lambda < 0$ , we see that all trajectories approach 0. Because of the trig functions, they spiral in counterclockwise. The following image is based on material in http://www.math.nus.edu.sg/ matysh/ma3220/chap9.pdf.



**Example.** Page 365 Number 14(a). The electric circuit shown below is described by the system of differential equations

$$\frac{d}{dt} \begin{bmatrix} I \\ V \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{L} \\ -\frac{1}{C} & -\frac{1}{RC} \end{bmatrix} \begin{bmatrix} I \\ V \end{bmatrix}$$

where I is the current through the inductor and V is the voltage drop across the capacitor. Show that the eigenvalues of the coefficient matrix are real and different if  $L > 4R^2C$ ; show they are complex conjugates if  $L < 4R^2C$ .



Solution. For eigenvalues we consider:

$$\det(A - \lambda \mathcal{I}) = \begin{vmatrix} 0 & \frac{1}{L} \\ -\frac{1}{C} & -\frac{1}{RC} \end{vmatrix} = -\lambda \left( -\frac{1}{RC} - \lambda \right) + \frac{1}{CL} = \lambda^2 + \frac{1}{RC} + \frac{1}{CL}.$$

Setting this equal to 0 we find the eigenvalues

$$\lambda = \frac{-\frac{1}{RC} \pm \sqrt{\left(\frac{1}{RC}\right)^2 - \frac{4}{CL}}}{2}.$$

So the eigenvalues are real and different if  $\left(\frac{1}{RC}\right)^2 - \frac{4}{CL} > 0$  or  $\frac{1}{R^2C^2} - \frac{4}{CL} > 0$ or  $\frac{1}{R^2C^2} > \frac{4}{CL}$  or  $R^2C^2 < \frac{CL}{4}$  or  $4R^2C < L$ , as claimed. The eigenvalues are complex conjugates if  $\frac{1}{R^2C^2} - \frac{4}{CL} < 0$  or if  $4R^2C > L$ .