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Section 7.8. Fundamental Matrices

Note. We approach the system of equations ~x ′ = P (t)~x with a more direct use of

matrices. We solve IVPs and address the exponentiation of matrices.

Definition. Suppose that ~x (1), ~x (2), . . . , ~x (n) form a fundamental set of solutions

for ~x ′ = P (t)~x on the interval α < t < β. Then the matrix ψ(t) whose columns are

the vectors ~x (i), for i = 1, 2, . . . , n, is a fundamental matrix for the system of DEs.

Note. The general solution of ~x ′ = P (t)~x is ~x = ψ(t)~c where ~c is a vector of

arbitrary constants. If the initial conditions ~x(t0) = ~x 0 then we have ψ(t0)~c = ~x 0

and, since ψ(t) is nonsingular (the columns are linearly independent), we have

~c = ψ−1(to)~x
0 and the general solution of the system is

~x = ψ(t)ψ−1(t0)~x
0.

Note. If we let ϕ(t) = ψ(t)ψ−1(t0), then the general solution of the system is

~x = ϕ(t)~x 0 and ϕ(t0) = I. In this case, any IVP can be solved simply by letting

~x = ϕ(t)~x 0.

Example. Page 378 Number 5. Consider ~x ′ =





2 −5

1 −2



 ~x. Find the fundamental

matrix ϕ(t) where ϕ(0) = I.
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Solution. First, we find the eigenvalues and consider

det(A− λI) =

∣

∣

∣

∣

∣

∣

2 −R −5

1 −2 − R

∣

∣

∣

∣

∣

∣

= (2−R)(−2−R) + 5 = −4 +R2 + 5 = 1 +R2,

and so the eigenvalues are R = ±i. For the eigenvectors, consider R1 = i and the

vector equation (A− λI)~ξ = ~0 which has the associated augmented matrix




2 − i −5 0

1 −2 − i 0



 ∼





1 −(2 + i) 0

0 0 0





and an eigenvector is

~ξ (1) =





2 + 1

1



 =





2

1



+ i





1

0



 .

So ~a =





2

1



, ~b =





1

0



, λ = 0, µ = 1, and the general solution to the DE is

~x = c1e
0t(~a cos 1t−~b sin 1t) + c2e

0t(~a sin 1t+~b cos 1t)

=





2

1



 (c1 cos t+ c2 sin t) +





1

0



 (−c1 sin t + c2 cos t)

= c1





2 cos t− sin t

cos t



+ c2





2 sin t+ cos t

sin t



 .

So a fundamental matrix is

ψ(t) =





2 cos t− sin t 2 sin t + cos t

cos t sin t





and

ψ(0) =





2 1

1 0



 and ψ−1(0) =





0 1

1 −2



 .
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Well, ϕ(t) = ψ(t)ψ−1(0), so

ϕ(t) =





2 sin t+ cos t −5 sin t

sin t cos t− 2 sin t



 .

Notice that ϕ(0) = I.

Example. Page 378 Number 5 (continued). Solve the IVP:































~x ′ =





2 −5

1 −2



 ~x

~x 0 =





1

1



 .

Solution. Well, ~x = ϕ(t)~x 0, so

~x =





−3 sin t + cos t

cos t− sin t



 .

Note. Other IVPs with the same DE, but different initial values, could be similarly

solved.

Note. Consider ~x ′ = A~x. If A is a diagonal matrix, then the system is very easy

to solve (in this case, the variables are “uncoupled”). Suppose, though, that A

is diagonalizable (recall that this is the case if A has a complete set of n linearly
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independent eigenvectors; in particular, this is true if A is Hermitian), say

D = T−1AT =

















R1 0 · · · 0

0 R2 · · · 0

...
... . . . ...

0 0 · · · Rn

















where the Ri are the eigenvalues of A. Consider the change of variables ~x = T~y.

Then ~x ′ = A~x becomes T~y ′ = AT~y or ~y ′ = T−1AT~y = D~y. A fundamental matrix

of this system is

Q(t) =

















R1 0 · · · 0

0 R2 · · · 0

...
... . . . ...

0 0 · · · Rn

















and so a fundamental matrix of ~x ′ = A~x is ψ = TQ. This is the same solution as

obtained in previous sections, but illustrates that the problem of solving a system

of DEs is equivalent to diagonalizing a matrix.

Note. Recall that

eAt = exp(At) = 1 +

∞
∑

n=1

(At)n

n!
.

So for a constant matrix A, we have the following.

Definition. If A is a constant matrix, define

exp(At) = I +

∞
∑

n=1

Antn

n!
.
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Theorem. Each component of the above matrix sum converges as n → ∞. This

means that differentiation, integration, and multiplication can be done term-by-

term.

Example. Notice that we have

d

dt
[exp(At)] =

d

dt

[

I +

∞
∑

n=1

Antt

n!

]

= 0 +

∞
∑

n=1

Anntn−1

n!

= A

(

I +

∞
∑

n=1

Antn

n!

)

= A exp(At).

Note. The above example shows that a solution to ~x ′ = A~x is ~x = exp(At). This

means that the unique solution to the IVP






~x ′ = A~x

~x ′(0) = ~x 0

is ~x = exp(At)~x 0.

Note. (This is not in the book.) Suppose A is diagonalizable, say T−1AT = D or

A = TDT−1. Then

exp(At) = exp(TDT−1) = I +

∞
∑

n=1

(TDT−1)ntn

n!
= I + T

(

∞
∑

n=1

Dntn

n!

)

T−1

= T

(

I +

∞
∑

n=1

Dntn

n!

)

T−1 = T exp(Dt)T−1.
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So if A is diagonalizable, then the unique solution to






~x ′ = A~x

~x ′(0) = ~x 0

is ~x = T exp(Dt)T−1~x 0. Again, to find T , we need the eigenvalues and eigenvec-

tors of A. We haven’t saved any work here, only introduced some well motivated

notation.

Example. Solve ~x ′ =





3 −2

2 −2



 ~x by this method (this is Page 356 Number 1).

Solution. The eigenvalues of A are λ1 = −1 and λ2 = 2 with eigenvectors ~ξ (1) =




1

2



 and ~ξ (2) =





2

1



. So

T =





1 2

2 1



 and D =





−1 0

0 2



 .

We find that T−1 = 1
3





−1 2

2 −1



 . So

~x = T exp(Dt)T−1~c =
1

3





1 2

2 1









e−t 0

0 e2t









−1 2

2 −1



~c

=
1

3





e−t 2e2t

2e−t e2t









−1 2

2 −1



~c =
1

3





−e−t + 4e2t 2e−t
− 2e2t

−2e−t + 2e2t 4e−t
− e2t









c1

c2





=





c1

3 (−e−t + 4e2t) + c2

3 (2e−t
− 2e2t)

c1

3 (−2e−t + 2e2t) + c2

3 (4e−t
− e2t)
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=





(

−
c1

3
+ 2c2

3

)

e−t +
(

4c1

3
−

2c2

3

)

e2t

(

−
2c1

3
+ 4c2

3

)

e−t +
(

2c1

3
−

c2

3

)

e2t





= k1





1

2



 e−t + k2





2

1



 e2t

where k1 = −c1/3 + 2c2/3 and k2 = 2c1/3 − c2/3.
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