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Chapter 9. Nonlinear Differential

Equations and Stability

Note. In this chapter we do not actually solve DEs but discuss, in a qualitative

way, their behavior.

Section 9.1. The Phase Plane: Linear Systems

Note. In this section we consider ~x ′ = A~x where A is a 2 × 2 constant matrix.

Definition. A vector ~x satisfying A~x = ~x is called an equilibrium solution of the

DE.

Note. At an equilibrium solution,

d~x

dt
= ~x ′ = A~x = ~0.

Such points might also be called critical points. Notice that if det(A) 6= 0 then the

only equilibrium solution for the DE is ~x = ~0

Definition. Suppose ~x is a solution to the DE. Then let





x1

x2



. Recall that we

can then represent any solution of the DE in the x1, x2-plane by a trajectory The

x1, x2-plane is called the phase plane and the set of all trajectories is called the

phase portrait of the DE.
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Note. In this section, we relate the eigenvalues of A to the behavior of the trajec-

tories.

Note. Consider ~x ′ = A~x where A is 2 × 2 and suppose the eigenvalues are real,

distinct, and of the same sign. First, say R1 < R2 < 0. Then the general solution

of the DE is

~x = c1
~ξ (1)eR1t + c2

~ξ (2)eR2t

and in the phase plane (this is Figure 9.1.1(a) in the 10 edition of DiPrima and

Boyce):

Notice that ~ξ (1) and ~ξ (2) could point in any directions, but could not be parallel (or

antiparallel). Since R1 < R2 < 0, any solution will satisfy ~x → ~0 as t → ∞. That

is, solutions approach the equilibrium solution at t → ∞. In this case, ~0 is called

a node or nodal sink. Second, say 0 < R2 < R1. Then we have a similar case as

above, except the directions of all trajectories are reversed. In this case, ‖~x‖ → ∞

as t → ∞. In this case, ~0 is called a node or nodal source.
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Note. Consider ~x ′ = A~x where A is 2 × 2 and suppose the eigenvalues are real,

distinct, and of opposite signs. Suppose R1 > 0 and R2 < 0. Then the general

solution is

~x = c1
~ξ (1)eR1t + c2

~ξ (2)eR2t

and in the phase plane (this is Figure 9.1.2(a) in the 10 edition of DiPrima and

Boyce):

Notice that if c1 = 0, then ~x → ~0 as t → ∞. If c1 6= 0 then ‖~x‖ → ∞ as t → ∞.

In this case, the equilibrium ~0 is called a saddle point.

Note. Consider ~x ′ = A~x where A is 2× 2 and suppose eigenvalue R is of algebraic

multiplicity 2 and that there are two linearly independent eigenvectors associated

with eigenvalue R (that is, R is an eigenvector of geometric multiplicity 2). Then

the general solution is

~x = c1
~ξ (1)eRt + c2

~ξ (2)eRt

and if R < 0 in the phase plane (this is Figure 9.1.3(a) in the 10 edition of DiPrima

and Boyce):
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Notice that all trajectories are straight lines and ~x → ~0 as t → ∞. If R > 0 then

we have a similar case as above, except the directions of all trajectories are reversed

and in this case, ‖~x‖ → ∞ as t → ∞. With either R < 0 or R > 0, ~0 is called a

proper node.

Note. Consider ~x ′ = A~x where A is 2×2 and suppose eigenvalue R is of algebraic

multiplicity 2 but that there is only one linearly independent eigenvector for R

(that is, R is an eigenvector of geometric multiplicity 1). Then the general solution

is

~x = c1
~ξeRt + c2

(

~ξteRt + ~ηert

)

where ~eta is as discussed in Section 7.7, Repeated Eigenvalues.” If R < 0 then in

the phase plane (this is Figure 9.1.4(a) and (c) in the 10 edition of DiPrima and

Boyce):
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For t large, the dominant term of ~x is c2
~ξteRt. See page 432 (see also Example 1

on pages 366–368). If R < 0, the arrows are simply reversed. In either case, ~0 is

called an improper node or degenerate node.

Note. Consider ~x ′ = A~x where A is 2 × 2 and suppose the eigenvalues of A are

λ ± iµ where λ 6= 0 and µ 6= 0. As we saw in Chapter 7, trajectories in the phase

plane of solutions are spirals. The critical point of such a system is called a spiral

point (or sometimes spiral sink/source). In the phase plane (this is Figure 9.1.5(a)

and (c) in the 10 edition of DiPrima and Boyce):
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Note. Consider ~x ′ = A~x where A is 2 × 2 and suppose the eigenvalues of A are

±iµ. Again, from Chapter 7, since λ = 0 we get that the solutions are trajectories

which are ellipses: In the phase plane (this is Figure 9.1.7(a) in the 10 edition of

DiPrima and Boyce):

The ellipses are centered at ~0 if the DE is homogeneous. In this case, ~0 is called

the center.

Note. In conclusion, for the 2× 2 system ~x ′ = A~x, the only critical point is ~0. No

two trajectories intersect and the only solution passing through ~0 is the (unique)

solution ~0 (no other trajectories pass through ~0). We have seen solutions fall into

the following categories:

Asymptotic Stability: All solutions remain bounded and do not approach ~0 as

t → ∞.

Stability: All solutions remain bounded and do not approach ~0 as t → ∞.

Instability: Some trajectories approach infinity as t → ∞.
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Example. Page 437 Number 17. If a mass m is suspended on a spring with spring

constant k and the system oscillates in a medium which resists motion with a force

proportional to velocity (with constant of proportionality c), then the position of

m is give by mu′′ + cu′ + ku = 0 where derivatives are with respect to time and

displacement u is measured from the equilibrium position.

Write this second order equation as a system of two first order equations for x = u

and y = du/dt. Show that x = 0, y = 0 is a critical point and analyze the nature

and stability of the cirtical point as a function of the parameters m, c, and k.

Solution. Substituting we have

x = u

y = u′
which implies







y = x′

y′ = − c

m
y − k

m
x

or




x′

y′



 =





0 1

− k

m
− c

m









x

y



 .

Notice, since the DE is homogeneous,





0

0



 is the only critical point. For eigen-
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values, we consider
∣

∣

∣
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m
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− λ

∣

∣

∣

∣

∣

∣

= λ
( c

m
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+
k

m
= λ2 +

c

m
λ +

k

m
.

Setting this equal to 0 gives the eigenvalues λ =
−c ±

√
c2 − 4mk

2m
. We now analyze

these eigenvalues.

1. If c2 − 4km > 0 then the eigenvalues are real, distinct, and negative and the

critical point is asymptotically stable. In this case, the motion is said to be

overdamped.

2. If c2 − 4km < 0 then the eigenvalues are complex with negative real parts and

the critical point is an asymptotically stable spiral point. In this case the

motion is said to be underdamped.

3. Of c2 − 4km = 0 then the eigenvalues are real, equal, and negative. In either

case, the critical point is a node. We find that there is only one linearly

independent eigenvector for the given eigenvalue and so the node is improper.

In this case the motion is said to be cricitally damped.

The graph of u as a function of time t for these different cases is:
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This image is from http://hyperphysics.phy-astr.gsu.edu/hbase/oscda2.html

(accessed 3/14/2019).
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