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Section 9.3. Almost Linear Systems

Note. We now “linearize” almost linear systems of differential equations and

use the linearization to analyze the stability of critical points of the almost linear

system.

Theorem 9.3.1. The critical point ~x = ~0 of the linear system ~x ′ = A~x is:

1. asymptotically stable if the eigenvalues R1 and R2 of A are real and negative,

or have negative real part,

2. stable, but not asymptotically stable, if R1 and R2 are purely imaginary,

3. unstable if R1 and R2 are real and at least one is positive, or if at least one has

positive real part (of course with A real and R1 complex then R1 = R2).

Note. If the entries of A are slightly perturbed, then a stable system can be

changed into an unstable one. If R1 = R2 = iµ, then the critical point is a center.

If the entries of A are slightly perturbed, then R1 and R2 will be slightly perturbed.

So the critical point could become a spiral point and the system may be stable or

unstable (depending on whether the real part of R1 and R2 is positive or negative).

Note. If R1 = R2 then a perturbation could convert the critcal point (a node)

into either a node (with the new eigenvalues still real, an unlikely event) or a

spiral point. In either case, with small perturbations, the stability is not changed,

although the trajectories may be significantly different. In the remaining cases,

small perturbations do not affect stability.
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Note. We no consider nonlinear systems which behave like linear systems near

their critical points. For the autonomous system ~x ′ = ~f (~x), if ~x 0 is a critical point,

then by making the substitution ~u = ~x − ~x 0, we can convert this system into one

with ~0 as a critical point.

Definition. Suppose ~x ′ = A~x + ~g(~x) where A is a constant matrix, det(A) 6= 0

and ~x = ~0 is an isolated critical point of the DE. Suppose the components of ~g have

continuous first partial derivatives and

lim
~x→~0

‖~g(~x)‖
‖~x‖ = 0.

Then the DE is said to be almost linear in a neighborhood of ~0.

Note. The condition lim
~x→~0

‖~g(~x)‖
‖~x‖ = 0 is equivalent to







limr→0
g1(x,y)

r
= 0, and

limr→0
g2(x,y)

r
= 0

where

~g(~x) =





g1(~x)

g2(~x)



 and r = ‖~x‖ =

∥

∥

∥

∥

∥

∥





x

y





∥

∥

∥

∥

∥

∥

=
√

x2 + y2.

Note. Stability of the critical point ~0 for an almost linear system is given in terms

of the eigenvalues of A in Theorem 9.3.2 and Table 9.3.1.
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Example. Consider






dx
dt

= y + x(1 − x2 − y2)

dy
dt

= −x + y(1 − x2 − y2).

Verify that ~0 is a critical point, the system is almost linear, and discuss the stability

of ~0.

Solution. Clearly ~0 is a critical point. Also,

~x ′ =





1 1

−1 1



~x +





−x3 − xy2

−x2y − y3



 .

Letting x = r cos θ, y = r sin θ we have

lim
r→0

g1(x, y)

r
= lim

r→0

−r3(cos3 θ − cos θ sin θ)

r
= 0

and

lim
r→0

g2(x, y)

r
= lim

r→0

r3(− cos2 θ sin θ − sin3 θ)

r
= 0.

So the system is almost linear near ~0 (notice that partials are continuous). Now

det(A − λI) =

∣

∣

∣

∣

∣

∣

1 − λ 1

−1 1 − λ

∣

∣

∣

∣

∣

∣

= (1 − λ)2 + 1 = λ2 − 2λ + 2

and so λ =
2 ±

√
4 − 8

2
= 1 ± i are the eigenvalues. So ~0 is a spiral point and the

system is unstable.

Example. Recall that the DE for a damped pendulum is

m`2d
2θ

dt2
= −c`

dθ

dt
− mg` sin θ,
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which can be written






dx
dt

= y

dy

dt
= −g

`
sin x − c

m`
y

where x = θ and y = dθ/dt. We can also write






dx
dt

= y

dy
dt

= −g
`
x − c

m`
y − g

`
(sin x − x)

or

~x ′ =





0 1

−g
`

− c
m`



 ~x +





0

−g
`
(sin x − x)



 .

It can be shown that lim
r→0

sin x − x

r
= 0 (see Page 450 Example 2). So this system

is almost linear near ~0. As in the previous section, we find that this system has

asymptotically stable critical points at 2nπ where n ∈ Z, and unstable critical

points at (2n + 1)π where n ∈ Z. In the phase plane (this is Figure 9.3.5 in the 10

edition of DiPrima and Boyce):
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Note/Definition. Notice that in certain regions of the phase plane, solutions are

attracted to stable equilibria. These regions are called the basin of attraction (or

region of asymptotic stability) for the critical point. A boundary between these

regions is called a separatrix. If every trajectory approaches a critical point, as

with the system ~x ′ = A~x for the critical point ~0, then the critical point is said to

be globally asymptotically stable.
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