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Section 9.4. Competing Species

Note. You saw in Calculus 2 the idea of exponential growth and decay; see

my online notes for “Exponential Change and Separable Differential Equations”

at http://faculty.etsu.edu/gardnerr/1920/12/c7s2.pdf. We can modify the

idea of a population that grows exponentially by introducing a carrying capacity on

the environment. This leads to the logistic equation (also see my notes on applica-

tion of first-order DES from Calculus 2: http://faculty.etsu.edu/gardnerr/1920

/12/c9s3.pdf). In this section, we briefly review these ideas and then introduce a

model concerning two species in an environment which compete with one another

for resources. This is modeled by two DEs in two variables.

Note/Definition. If x is the size of a population at time t and if the rate of

growth of x is proportional to x then dx/dt = εx and x = x0e
εt. This is called

exponential growth (or “exponential decay” if ε < 0).

Note/Definition. If we put a maximum on the size of x (usually called a carrying

capacity) then we have dx/dt = x(ε − σx) and

x =
x0(ε/σ)

x0 + ((ε/σ) − x0)e−εt
.

This is called logistic growth.
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Note. We now consider two species which interact (compete) and are governed by

logistic growth. We have






dx
dt

= x(ε1 − σ1x − α1y)

dy

dt
= y(ε2 − σ2y − α2x)

In order to analyze this system, we need the following theorem.

Theorem. Consider ~x ′ = ~f(~x) =





F (x, y)

G(x, y)



 . Suppose (x0, y0) is a critical point.

Then (by Taylor’s Theorem for expansions of F and G about the point (x0, y0), see

page 450)

~x ′ =





Fx(x0, y0) Fy(x0, y0)

Gx(x0, y0) Gy(x0, y0)









x − x0

y − y0



 +





η1(x, y)

η2(x, y)





for some η1 and η2. Here Fx = ∂F/∂x and Fy = ∂F/∂y, and similarly for G.
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Example. Page 460 Example 1. Describe the qualitative behavior of solutions of

the system






dx
dt

= x(1 − x − y)

dy

dt
= y(3

4
− y − 1

2
x).

Solution. Well, we find that the critical points are (0, 0), (0, 3/4), (1, 0), and

(1/2, 1/2). Notice that along the line 1 − x − y = 0, we have dx/dt = 0:

This line is called the x nullcline. Similarly, the y nullcline is the line 3

4
−y− 1

2
x = 0:
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Graphing the x and y nullclines together:

We have:

1. For critical point (0, 0), we have

~x ′ =





1 0

0 3

4



~x +





−x2 − xy

−1

2
xy − y2





and the eigenvalues of the matrix A are 1 and 3/4. So (0, 0) is an unstable

node.

2. For critical point (1, 0) we have by the theorem above that

~x ′ =





−1 −1

0 1

4









x − x0

y − y0



 + ~η.

Note that the system is almost linear near (1, 0) also. We have the eigenvalues

of A of −1 and 1/4, so (1, 0) is a saddle point.

3. For critical point (0, 3/4), we have

~x ′ =





1

4
0

−3

8
−3

4









x − x0

y − y0



 + ~η
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and the eigenvalues are 1/4 and −3/4, so (0, 3/4) is also a saddle point.

4. For critical point (1/2, 1/2), we have

~x ′ =





−1

2
−1

2

−1

4
−1

2









x − x0

y − y0



 + ~η

and the eigenvalues are (−2 ±
√

2)/4 and so (1/2, 1/2) is an asymptotically

stable node.

Combining this information, we have (this is Figure 9.4.2 in the 10 edition of

DiPrima and Boyce):
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Note. The previous example suggests that we have 4 possibilities according to the

values of ε1, ε2, σ1, σ2, α1, α2 (equilibria are represented with yellow circles):

Note. An analysis of the eigenvalues shows that:

1. if σ1σ2 > α1α2 then the competition is weak and the species can coexist,

2. if σ1σ2 < α1α2 then the competition is strong and the species cannot coexist.
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