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Section 9.6. Liapunov’s Second Method

Note. In a physical, dynamical system, such as the pendulum or mass on a spring,

the total energy is constant (assuming a conservative system, of course). Also, an

equilibrium is stable if the potential energy is at a local minimum. With this as

inspiration, we look for a function V which will behave somewhat like total energy.

We will call such a function a Liapunov function.

Definition. Let V be defined on some domain D (i.e., an open connected set) in

R
2 containing (0, 0). V is positive definite on D if V (0, 0) = 0 and V (x, y) > 0 for

all other (x, y) ∈ D. If V (0, 0) = 0 and V (x, y) ≥ 0 for all (x, y) ∈ D then V is

positive semidefinite. Negative definite and semidefinite are similarly defined (with

< and ≤).

Definition. Consider the autonomous system

(∗)







dx
dt

= F (x, y)

dy

dt
= G(x, y)

and a function V (x, y). Define

V̇ = Vx(x, y)F (x, y) + Vy(x, y)G(x, y).

V̇ is the derivative of V with respect to the system (∗).

Note. V̇ is the rate of change of V along a trajectory of (∗) that passes through

the point (x, y).
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Theorem 9.6.1. Suppose (∗) has an isolated critical point at (0, 0). If there

exists a V that is continuous and has continuous first partial derivatives, is positive

definite, and V̇ is negative definite on some domain D in R
2 containing (0, 0) then

(0, 0) is an asymptotically stable critical point. If V̇ is negative semidefinite then

(0, 0) is a stable critical point.

Theorem 9.6.2. Suppose (∗) has an isolated critical point at (0, 0). let V be

continuous with continuous first partial derivatives. Suppose V (0, 0) = 0 and that

is every neighborhood of (0, 0) there is a point at which V is positive (negative).

Then if there is a domain D containing (0, 0) such that V̇ is positive definite

(negative definite) on D, then (0, 0) is an unstable critical point.

Note. The idea of Theorem 9.6.1: Think of V as total energy. If V is positive

definite and V̇ is negative definite, then V has a local minimum at (0, 0). With

V̇ negative definite, energy is strictly decreasing along trajectories approach (0, 0).

With V̇ negative semidefinite, we only know that the trajectories do not go away

from (0, 0).

Note. The idea of Theorem 9.6.2: If V (0, 0) = 0 and V̇ is positive definite, then

energy increases along trajectories and so trajectories go away from (0, 0) since V

is positive “away from” (0, 0). Similarly with V̇ negative definite (energy decreases

along trajectories).
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Definition. A function V satisfying the conditions of Theorems 9.6.1 and 9.6.2 is

called a Liapunov function.

Note. We can use Liapunov functions to find basins of attraction for asymptoti-

cally stable critical points, as in the following theorem.

Theorem 9.6.3. Let (0, 0) be an isolated critical point of (∗). Let V be continuous

and have continuous first partial derivatives. If there is abounded domain DK

containing (0, 0) where V (x, y) < K, V is positive definite, and V̇ is negative

definite, then an energy solution that starts in DK approaches (0, 0) as t → ∞.

That is, DK is in the basin of attraction of (0, 0).

Note. Notice that we have nowhere said anything about the construction of Lia-

punov functions.

Example. Page 489 Number 1. Find a Liapunov function of the form V (x, y) =

ax2 + cy2 and show






dx
dt

= −x3 + xy2 = F (x, y)

dy

dt
= −2x2y − y3 = G(x, y)

has an asymptotically stable critical point at (0, 0).

Solution. Well, (0, 0) is certainly a critical point and V (x, y) is positive definite
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in domains containing (0, 0) (excluding (0, 0)) if a > 0 and c > 0. Now

V̇ (x, y) = Vx(x, y)F (x, y) + Vy(x, y)G(x, y) = −2ax4 + (2a − 4c)x2y2
− 2cy4.

So, V̇ is negative definite if 2a < 4c. So let a = 1 and c = 2. Then let

V (x, y) = x2 + 2y2. By Theorem 9.6.1, this Liapunov function shows that (0, 0) is

an asymptotically stable critical point.

Example. Page 490 Number 8. The Liénard equation is

d2u

dt2
+ c(u)

du

dt
+ g(u) = 0,

c(u) ≥ 0, where g(0) = 0, g(u) > 0 for 9 < u < k and g(u) < 0 for −k < u < 0.

Show that u = 0, du/dt = 0 is a stable equilibrium.

Solution. Well, let x = u and y = du/dt. Then the system becomes:






dx
dt

= y = F (x, y)

dy

dt
= −c(x)y − g(x) = G(x, y).

The critical point is





x

y



 =





0

0



. Consider (see Page 490 Number 6):

V (x, y) =
1

2
y2 +

∫ x

0

g(s) ds, −k < x < k.

Notice V (x, y) is positive definite for −k < x < k and −∞ < y < ∞. Also

V̇ (x, y) = g(x)y + y(−c(x)y − g(x)) = −y2c(x).

Notice V̇ is negative semidefinite, so by Theorem 9.6.1, the critical point is stable.
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