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The Derivation of Kepler’s Laws

of Planetary Motion

From Newton’s Law of Gravity

Note. The German astronomer/astrologer Johannes Kepler (1571–1630) made

the following observations about the movements of the planets around the Sun,

expanding on a conjecture of the Polish astronomer Nicholas Copernicus (1473–

1543):

1. Each planet orbits the Sun in an elliptical orbit with the Sun at one focus.

2. A line drawn from the Sun to a planet sweeps out equal areas in equal times.

3. The square of the period of a planet is proportional to the cube of the mean

distance between the planet and the Sun (if distance is measured in Astro-

nomical Units, AUs, and time is measured in Earth years, then the constant

of proportionality is 1).

Kepler’s laws are purely empirical and, when stated, has no theoretical backing. It

is interesting that Kepler reached all these conclusions from data gathered with the

naked eye (primarily data that was collected by Tycho Brahe (1546–1601) since his

investigations took place before the invention of the telescope by Galileo (1564–

1642) in 1610. Kepler’s laws were simply observations, however. Therefore, one of

the biggest questions of the Renaissance was: “Why (or perhaps more accurately,

“how”) do the planets obey Kepler’s laws?” Sir Isaac Newton (1642–1727) answered

this question with his Universal Law of Gravitation.
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Note. We will now take Newton’s law of gravitation and derive Kepler’s First Law.

The following is in M. W. Hirsch and S. Smale’s Differential Equations, Dynamical

Systems, and Linear Algebra (Academic Press, 1974); see Chapter 2. We start by

considering a vector field ~F (~x). this is a function which associates with each point

(or vector) in 3-space (3 dimensional Euclidean space) another vector (or point) of

3-space. We want ~F to describe the force due to gravity at the point ~x.

Definition. Let v(~x) be a function that associates a scalar with each point ~x of

3-space. Then the function ~F (~x) is said to be conservative if

~D(~x) = −

(

∂V

∂x1

ı̂ +
∂V

∂x2

̂ +
∂V

∂x3

k̂

)

where we represent the coordinates of 3-space with x1, x2, x3 and let ı̂, ̂, k̂ be the

unit vectors pointing along the x1, x2, x3 axes, respectively. The function V (~x) is

called the potential energy function.
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Note/Definition. Recall that the kinetic energy of a particle is
1

2
× mass ×

(velocity)2. So if ~x(t) describes the position of a particle at time t, define its kinetic

energy to be T =
1

2
m‖~x ′‖2 where m is the mass of the particle. The total energy

of such a particle is

E = potential energy + kinetic energy = T + V.

Notice that T and V can both be viewed as functions of time. So, too can E:

E = E(t) =
1

2
m‖~x ′‖2 + V (~x(t)).

Theorem. Conservation of Energy Theorem.

Let ~x(t) be the trajectory of a particle moving in a conservative force field ~F =

−grad(V ). Then the total energy E is a constant.

Proof. We will show that
d

dt
[E] = 0. We have

d

dt
[E] =

d

dt
[T + V ] =

d

dt

[

1

2
m‖~x ′‖2 + V (~x(t))

]

.

Now, ‖~x ′‖2 = (x′
1
)2 + (x′

2
)2 + (x′

3
)2 where x1, x2, x3 are each functions of time and

~x = x1ı̂ + x2̂ + x2k̂. So, with dot products represented by angled brackets (the

conventional notation for an inner product),

d

dt
[‖~x ′‖2] = 2x′

1
x′′

1
+ 2x′

1
x′′

2
+ 2x′

3
x′′

3
= 2~x ′ · ~x ′′ = 2〈~x ′, ~x ′′〉.

Also

d

dt
[V (~x(t))] =

∂V

∂x1

x′
1
+

∂V

∂x2

x′
2
+

∂V

∂x3

x′
3

= grad(V ) · ~x ′ = 〈grad(V ), ~x ′〉.
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So,
d

dt
[E] = m〈~x ′, ~x ′′〉 + 〈grad(V ), ~x ′〉 = m〈~x ′′, ~x ′〉 + 〈grad(V ), ~x ′〉

= 〈m~x ′′ + grad(V ), ~x ′〉 = 〈m~x ′′ − ~F (~x), ~x ′〉.

From Newton’s Second Law, force = mass × acceleration, m~x ′′ − ~F (~x) = ~0 and so

d
dt [E] = 〈~0, ~x ′〉 = 0. Therefore, E is a constant and the total energy is conserved.

Note. The Conservation of Energy Theorem is why such force fields are called

“conservative.”

Definition. A force field ~F (~x) is said to be central if ~F (~x) is a scalar (function)

multiple of ~x, ~F (~x) = λ(x)~x, where λ(~x) is a scalar.

Note. We now make two claims, but omit the proofs.

Lemma 1. Let ~F be a conservative force field. If ~F is central, then ~F (~x) = f(‖~x‖)~x

for some scalar function f(‖~x‖).

Lemma 2. A particle moving under the influence of a central field moves in a

fixed plane.
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Note. In light of Lemma 2, to derive Kepler’s Laws, we need only consider motion

in a plane (i.e., in 2-space). We now have

~F (~x) = −

(

∂V

∂x1

ı̂ +
∂V

∂x2

̂

)

= −grad(V ).

We will now convert to polar coordinates (r, θ) where ‖~x‖ = r.

Definition. For a particle moving in the (r, θ)-plane with mass m, define the

angular momentum h = mr2dθ/dt. (Notice that r and θ are functions of time, and

therefore so is h.)

Theorem. Conservation of Angular Momentum.

For a particle moving in a central force field, angular momentum is constant.

Proof. Lets represent the (r, θ)-plane in terms of the complex plane. Then we can

represent a given point (r, θ) as reiθ. In the (x1, x2)-plane,

x1 = Re(reiθ) and x2 = Im(reiθ).

With ~x = reIθ, we have

~x′ = [r′]eiθ + r[ieiθ]

~x ′′ = [r′′]eiθ + r′[ieiθθ′] + [r′](ieiθθ′) + r[[−eiθθ′]θ′ + (ieiθ)θ′′]

= eiθ(r′′ − r(θ′)2) + ieiθ(2r′θ′ + rθ′′). (∗)

Now, by Lemma 1, ~F (~x) = f(r)~x and by Newton’s Second Law, ~f(~x) = m~x ′′. So

~x ′′ =
1

m
f(r)~x =

1

m
f(r)reiθ. (∗∗)
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Equating (∗) and (∗∗) gives

r

m
f(r) = (r′′ + r(θ′)2) + i(2r′θ′ + rθ′′).

Since the left-hand side is real, it must be that 2r′θ2 + rθ′′ = 0 2rr′θ′ + r2θ′′ = 0

or d
dt

[r2θ′] = 0. So r2θ′ = r2 dθ/dt is constant and therefore angular momentum

h = mr2 dθ/dt is constant.

Theorem. Kepler’s Second Law.

Assuming a conservative central force field emanating from the Sun, a line drawn

from the Sun to a planet sweeps out equal areas in equal time.

Proof. Recall that in (r, θ)-plane the area bounded by r(θ) for θ ∈ [a, b] is

A =

∫ θ=β

θ=a

1

2
(r(θ))2 dθ.

Treating A, r, and θ as functions of time:

DA

dt
=

1

2
r2

dθ

dt
=

1

2m
h = constant.

So the rate of change of area with respect to time is a constant and Kepler’s Second

Law follows.

Note. Kepler’s Second Law is simply a statement of Conservation of Angular

Momentum (or course, that’s not what he thought!). We now shift our attention

to Kepler’s First Law.
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Note. Recall that Newton’s Law of Gravitation says that if a mass m1 lies at ~0

and another mass m2 lies at ~x, then the force on m2 is

−
gm1m2

‖~x‖2

~x

‖~x‖
= −

gm1m2

‖~x‖3
~x

where g is the gravitational constant.

Note. we are going to assume m1 is much greater than m2. So the acceleration of

m1 due to the force of gravity from m2 will be negligible. So with m1 unaccelerated,

it remains at ~0 and the force on m2 is ~F (~x) = −C~x/‖~x‖3 for some constant C.

(We need not make this assumption if we place the center of mass at ~0.) Better

yet, with a change of force units, we can say ~F (~x) = −~x/‖~x‖3. This force field is

conservative since ~F (~x) = −grad(V ) where V (~x) = −1/‖~x‖.

Problem 1. Prove V satisfies this relationship. HINT: Let ~x(t) = x1(t)̂ı + x2(t)̂.

Note. Notice also that this force field is central and we need only consider motion

in a plane. Again, we will stay in the (r, θ)-plane.

Note. Recall that r(1 + ε cos θ) = ` is a conic section of eccentricity ε.

Problem 2. Use the substitutions r cos θ = x and r2 = x2 + y2 to verify this

statement. Show that for 0 < ε < 1 the equation gives an ellipse, for ε > 1 a

hyperbola, for ε = 0 a circle, and for ε = 1 a parabola.
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Note. We introduce a new variable: u(t) = 1/r(t). Since θ is also a function of

time, we can treat u as a function of θ.

Lemma 3. We have the following relationship:

kinetic energy = T =
1

2

h2

m

(

(

du

dθ

)2

+ u2

)

.

Proof. Recall that with ~x = reiθ as above, ~x ′ = r′eiθ + rieiθθ′ and ‖~x ′‖2 =

(r′)2 + (rθ′)2. So since T = 1

2
m‖~x ′‖2, we have

T =
1

2
m((r′)2 + (rθ′)2).

Since r(t) = 1/u(t) or r = 1/u, we have

r′ = −
1

u2

du

dθ
θ′ by the Chain Rule

= −r2θ′
du

dθ

= −
k

m

du

dθ
since h = mr2θ′.

Also since h = mr2θ′, rθ′ = h/(nr) = hu/m. Therefore,

T =
1

2
m

(

(

−
h

m

du

dθ

)2

+

(

hu

m

)2
)

or T =
1

2

h2

m

(

(

du

dθ

)2

+ u2

)

.

Theorem. Kepler’s First Law.

Under Newton’s Law of Gravitation (an “inverse square law”) ~F (~x) = ~x/‖~x‖3

planets (or anything else) orbits the sun in a conic section.
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Proof. Since u = 1/r and V = −1/‖~x‖ = −1/r, we have u = −V . Since

T = E − V = E + u we have from Lemma 3,

T =
1

2

h2

m

(

(

du

dθ

)2

+ u2

)

= E + u or

(

du

dθ

)2

+ u2 =
2m

h2
(E + u).

Differentiating with respect to θ:

2
du

dθ

d2u

dθ2
+ 2u

du

dθ
=

2m

h2

(

dE

dθ
+

du

dθ

)

.

But E is constant with respect to time and with respect to θ so

2
du

dθ

d2u

dθ2
+ 2u

du

dθ
=

2m

h2

du

dθ
.

Dividing by 2 du/dθ gives

d2u

dθ
+ u =

m

h2
. (∗)

It is this second order nonhomogeneous DE that will give the result. The general

solution to (∗) is

u =
m

h2
+ C cos(θ + θ0) (∗∗)

where C and θ0 are arbitrary constants. We find that any solution of (∗) can be

put in the form

u =
m

h2

(

1 +

(

1 + 2
Eh2

m

)1/2

cos θ

)

or

r(1 + ε cos θ) =
h2

m
= ` whereε =

(

1 +
2Eh2

m

)1/2

.

Problem 3. Verify that (∗∗) is the general solution to (∗).
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Note. Notice that if E < 0 then ε < 1 and the conic is an ellipse. If E = 0 then

ε = 0 and the conic is a parabola. If E > 0 then ε > 1 and the conic is a hyperbola.

Bonus. In deriving (∗), we assumed du/dθ 6= 0. Why is this true, or what if

du/dθ = 0? ANSWER: Then dr/dt = 0 and the orbit is circular (so the Theorem

still holds).

Revised: 3/12/2019


