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Chapter 1. Systems of Linear Differential Equations
Section 1.2. Some Elementary Matrix Algebra—Proofs of Theorems
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Theorem 1.2.1(1)

Theorem 1.2.1(1)

Theorem 2.1. Let α ∈ R and suppose the products below are defined.
Then

1. A(BC ) = (AB)C

Proof. Let A be m× p, B be p × n, and C be n× r . Let D = A(BC ) and
E = (AB)C . Then

dij

p∑
k=1

aik


n∑

`=1

bk`c`j︸ ︷︷ ︸
(bc)kj
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aikbk`︸ ︷︷ ︸
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 c`j = eij .
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Theorem 1.2.4(a)

Theorem 1.2.4(a)

Theorem 1.2.4(a). If A−1 exists then det(A) 6= 0.

Proof. If AA−1 = I exists then by Theorem 1.2.3,

det(AA−1) = (det(A))(det(A−1) = det(I) = 1.

So det(A) 6= 0.
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Theorem 1.2.6

Theorem 1.2.6

Theorem 1.2.6. A matrix is nonsingular if and only if its columns are
linearly independent.

Proof. Suppose the columns of A are ~x1,~x2, . . . ,~xn and let c1, c2, . . . , cn

be scalars such that c1~x1 + ~c2~x2 + · · ·+ cn~xn = ~0. This is equivalent to
A~v = ~0 where ~c = [ci ].

A is nonsingular if and only if A~c = ~0 has a unique solution by Theorem
1.2.5. So if A is nonsingular, then ~c = ~0 and the columns of A are linear
independent. If A is singular, then there is some ~c 6= ~0 satisfying A~c = ~0
and the columns of A are linearly dependent.
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