Advanced Differential Equations

Chapter 1. Systems of Linear Differential Equations
Section 1.2. Some Elementary Matrix Algebra—Proofs of Theorems
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Theorem 1.2.1(1)

Theorem 1.2.1(1)

Theorem 2.1. Let o € R and suppose the products below are defined.
Then

1. A(BC) = (AB)C
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Theorem 1.2.1(1)

Theorem 1.2.1(1)

Theorem 2.1. Let o € R and suppose the products below are defined.
Then

A(BC) = (AB)C

Proof. Let Abe mx p, Bbe pxn, and C be nx r. Let D = A(BC) and
E = (AB)C. Then
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Theorem 1.2.4(a)

Theorem 1.2.4(a)

Theorem 1.2.4(a). If A~ exists then det(A) # 0.

Advanced Differential Equations April 7, 2019 4/5



Theorem 1.2.4(a)

Theorem 1.2.4(a)

Theorem 1.2.4(a). If A~ exists then det(A) # 0.

Proof. If AA~! = T exists then by Theorem 1.2.3,
det(AA™1) = (det(A))(det(A1) = det(Z) = 1.

So det(A) # 0. O
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Theorem 1.2.6

Theorem 1.2.6. A matrix is nonsingular if and only if its columns are
linearly independent.
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Theorem 1.2.6

Theorem 1.2.6

Theorem 1.2.6. A matrix is nonsingular if and only if its columns are
linearly independent.

Proof. Suppose the columns of A are X1,%,...,X, and let ¢1,¢,...,Cp

be scalars such that ¢1X; + &X + - - - + ¢,X, = 0. This is equivalent to
AV = 0 where ¢ = [¢].
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Theorem 1.2.6

Theorem 1.2.6. A matrix is nonsingular if and only if its columns are
linearly independent.

Proof. Suppose the columns of A are X1,%,...,X, and let ¢1,¢,...,Cp

be scalars such that ¢1X; + &X + - - - + ¢,X, = 0. This is equivalent to
AV = 0 where ¢ = [¢].

A is nonsingular if and only if A = 0 has a unique solution by Theorem
1.2.5. So if A is nonsingular, then & = 0 and the columns of A are linear
independent. If A is singular, then there is some & # 0 satisfying AZ = 0
and the columns of A are linearly dependent. []
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