Advanced Differential Equations

Chapter 1. Systems of Linear Differential Equations Section 1.2. Some Elementary Matrix Algebra—Proofs of Theorems

2 Theorem 1.2.4(a)

Theorem 1.2.1(1)

Theorem 2.1. Let $\alpha \in \mathbb{R}$ and suppose the products below are defined. Then

1. A(BC) = (AB)C

Proof. Let A be $m \times p$, B be $p \times n$, and C be $n \times r$. Let D = A(BC) and E = (AB)C. Then

$$d_{ij}\sum_{k=1}^{p}a_{ik}\left(\sum_{\substack{\ell=1\\(bc)_{kj}}}^{n}b_{k\ell}c_{\ell j}\right)=\sum_{\ell=1}^{n}\left(\sum_{k=1}^{p}a_{ik}b_{k\ell}c_{\ell j}\right)=\sum_{\ell=1}^{n}\left(\sum_{\substack{k=1\\(ab)_{i\ell}}}^{p}a_{ik}b_{k\ell}\right)c_{\ell j}=e_{ij}$$

Theorem 1.2.1(1)

Theorem 2.1. Let $\alpha \in \mathbb{R}$ and suppose the products below are defined. Then

1.
$$A(BC) = (AB)C$$

Proof. Let A be $m \times p$, B be $p \times n$, and C be $n \times r$. Let D = A(BC) and E = (AB)C. Then

$$d_{ij}\sum_{k=1}^{p}a_{ik}\left(\sum_{\substack{\ell=1\\(bc)_{kj}}}^{n}b_{k\ell}c_{\ell j}\right)=\sum_{\ell=1}^{n}\left(\sum_{k=1}^{p}a_{ik}b_{k\ell}c_{\ell j}\right)=\sum_{\ell=1}^{n}\left(\sum_{\substack{k=1\\(ab)_{i\ell}}}^{p}a_{ik}b_{k\ell}\right)c_{\ell j}=e_{ij}$$

Theorem 1.2.4(a)

Theorem 1.2.4(a). If A^{-1} exists then det $(A) \neq 0$.

Proof. If $AA^{-1} = \mathcal{I}$ exists then by Theorem 1.2.3,

$$\det(AA^{-1}) = (\det(A))(\det(A^{-1}) = \det(\mathcal{I}) = 1.$$

So det(A) \neq 0.

Theorem 1.2.4(a)

Theorem 1.2.4(a). If A^{-1} exists then det $(A) \neq 0$.

Proof. If $AA^{-1} = \mathcal{I}$ exists then by Theorem 1.2.3,

$$\det(AA^{-1}) = (\det(A))(\det(A^{-1}) = \det(\mathcal{I}) = 1.$$

So det(A) \neq 0.

Theorem 1.2.6. A matrix is nonsingular if and only if its columns are linearly independent.

Proof. Suppose the columns of A are $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n$ and let c_1, c_2, \ldots, c_n be scalars such that $c_1\vec{x}_1 + \vec{c}_2\vec{x}_2 + \cdots + c_n\vec{x}_n = \vec{0}$. This is equivalent to $A\vec{v} = \vec{0}$ where $\vec{c} = [c_i]$.

Theorem 1.2.6. A matrix is nonsingular if and only if its columns are linearly independent.

Proof. Suppose the columns of A are $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n$ and let c_1, c_2, \ldots, c_n be scalars such that $c_1\vec{x}_1 + \vec{c}_2\vec{x}_2 + \cdots + c_n\vec{x}_n = \vec{0}$. This is equivalent to $A\vec{v} = \vec{0}$ where $\vec{c} = [c_i]$.

A is nonsingular if and only if $A\vec{c} = \vec{0}$ has a unique solution by Theorem 1.2.5. So if A is nonsingular, then $\vec{c} = \vec{0}$ and the columns of A are linear independent. If A is singular, then there is some $\vec{c} \neq \vec{0}$ satisfying $A\vec{c} = \vec{0}$ and the columns of A are linearly dependent.

Theorem 1.2.6. A matrix is nonsingular if and only if its columns are linearly independent.

Proof. Suppose the columns of A are $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n$ and let c_1, c_2, \ldots, c_n be scalars such that $c_1\vec{x}_1 + \vec{c}_2\vec{x}_2 + \cdots + c_n\vec{x}_n = \vec{0}$. This is equivalent to $A\vec{v} = \vec{0}$ where $\vec{c} = [c_i]$.

A is nonsingular if and only if $A\vec{c} = \vec{0}$ has a unique solution by Theorem 1.2.5. So if A is nonsingular, then $\vec{c} = \vec{0}$ and the columns of A are linear independent. If A is singular, then there is some $\vec{c} \neq \vec{0}$ satisfying $A\vec{c} = \vec{0}$ and the columns of A are linearly dependent.