Advanced Differential Equations

Chapter 1. Systems of Linear Differential Equations

 Section 1.2. Some Elementary Matrix Algebra—Proofs of Theorems

Table of contents

(1) Theorem 1.2.1(1)
(2) Theorem 1.2.4(a)
(3) Theorem 1.2.6

Theorem 1.2.1(1)

Theorem 2.1. Let $\alpha \in \mathbb{R}$ and suppose the products below are defined.
Then

$$
\text { 1. } A(B C)=(A B) C
$$

Proof. Let A be $m \times p, B$ be $p \times n$, and C be $n \times r$. Let $D=A(B C)$ and $E=(A B) C$. Then

Theorem 1.2.1(1)

Theorem 2.1. Let $\alpha \in \mathbb{R}$ and suppose the products below are defined.
Then

$$
\text { 1. } A(B C)=(A B) C
$$

Proof. Let A be $m \times p, B$ be $p \times n$, and C be $n \times r$. Let $D=A(B C)$ and $E=(A B) C$. Then
$d_{i j} \sum_{k=1}^{p} a_{i k}(\underbrace{\sum_{\ell=1}^{n} b_{k \ell} c_{\ell j}}_{(b c)_{k j}})=\sum_{\ell=1}^{n}\left(\sum_{k=1}^{p} a_{i k} b_{k \ell} c_{\ell j}\right)=\sum_{\ell=1}^{n}(\underbrace{\sum_{k=1}^{p} a_{i k} b_{k \ell}}_{(a b)_{i \ell}}) c_{\ell j}=e_{i j}$.

Theorem 1.2.4(a)

Theorem 1.2.4(a). If A^{-1} exists then $\operatorname{det}(A) \neq 0$.

Proof. If $A A^{-1}=\mathcal{I}$ exists then by Theorem 1.2.3,

$$
\operatorname{det}\left(A A^{-1}\right)=(\operatorname{det}(A))\left(\operatorname{det}\left(A^{-1}\right)=\operatorname{det}(I)=1 .\right.
$$

So $\operatorname{det}(A) \neq 0$.

Theorem 1.2.4(a)

Theorem 1.2.4(a). If A^{-1} exists then $\operatorname{det}(A) \neq 0$.

Proof. If $A A^{-1}=\mathcal{I}$ exists then by Theorem 1.2.3,

$$
\operatorname{det}\left(A A^{-1}\right)=(\operatorname{det}(A))\left(\operatorname{det}\left(A^{-1}\right)=\operatorname{det}(\mathcal{I})=1 .\right.
$$

So $\operatorname{det}(A) \neq 0$.

Theorem 1.2.6

Theorem 1.2.6. A matrix is nonsingular if and only if its columns are linearly independent.

Proof. Suppose the columns of A are $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}$ and let $c_{1}, c_{2}, \ldots, c_{n}$ be scalars such that $c_{1} \vec{x}_{1}+\vec{c}_{2} \vec{x}_{2}+\cdots+c_{n} \vec{x}_{n}=\overrightarrow{0}$. This is equivalent to $A \vec{v}=\overrightarrow{0}$ where $\vec{c}=\left[c_{i}\right]$.

Theorem 1.2.6

Theorem 1.2.6. A matrix is nonsingular if and only if its columns are linearly independent.

Proof. Suppose the columns of A are $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}$ and let $c_{1}, c_{2}, \ldots, c_{n}$ be scalars such that $c_{1} \vec{x}_{1}+\vec{c}_{2} \vec{x}_{2}+\cdots+c_{n} \vec{x}_{n}=\overrightarrow{0}$. This is equivalent to $A \vec{v}=\overrightarrow{0}$ where $\vec{c}=\left[c_{i}\right]$.
A is nonsingular if and only if $\vec{C}=\overrightarrow{0}$ has a unique solution by Theorem 1.2.5. So if A is nonsingular, then $\vec{c}=\overrightarrow{0}$ and the columns of A are linear independent. If A is singular, then there is some $\vec{c} \neq \overrightarrow{0}$ satisfying $A \vec{c}=\overrightarrow{0}$ and the columns of A are linearly dependent.

Theorem 1.2.6

Theorem 1.2.6. A matrix is nonsingular if and only if its columns are linearly independent.

Proof. Suppose the columns of A are $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}$ and let $c_{1}, c_{2}, \ldots, c_{n}$ be scalars such that $c_{1} \vec{x}_{1}+\vec{c}_{2} \vec{x}_{2}+\cdots+c_{n} \vec{x}_{n}=\overrightarrow{0}$. This is equivalent to $A \vec{v}=\overrightarrow{0}$ where $\vec{c}=\left[c_{i}\right]$.
A is nonsingular if and only if $A \vec{c}=\overrightarrow{0}$ has a unique solution by Theorem 1.2.5. So if A is nonsingular, then $\vec{c}=\overrightarrow{0}$ and the columns of A are linear independent. If A is singular, then there is some $\vec{c} \neq \overrightarrow{0}$ satisfying $A \vec{c}=\overrightarrow{0}$ and the columns of A are linearly dependent.

