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Chapter 1. Systems of Linear Differential Equations
Section 1.3. The Structure of Solutions of Homogeneous Linear

Systems—Proofs of Theorems

() Advanced Differential Equations April 7, 2019 1 / 5



Table of contents

1 Theorem 1.3.2

2 Theorem 1.3.3

3 Theorem 1.3.4

() Advanced Differential Equations April 7, 2019 2 / 5



Theorem 1.3.2

Theorem 1.3.2

Theorem 1.3.2. If A(t) is an n × n matrix of continuous functions on an
interval I , then L[~x ] = ~x ′ − A~x is a linear operator.

Proof. Let ~x1(t) and ~x2(t) be differentiable vector functions and let
c1, c2 ∈ R. Then

L[c1~x1+c2~x2] = (c1~x1+c2~x2)
′−A(c1~x1+c2~x2) = c1~x

′
1+c2~x

′
2−c1A~x1−c2A~x2

= c1(~x
′
1 − A~x1) + c2(~x

′
2 − A~x2) = c1L[~x1] + c2L[~x1].

So L is linear.
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Theorem 1.3.3

Theorem 1.3.3

Theorem 1.3.3. Let L and A be as in Theorem 1.3.2. If ~x1 and ~x2 are
solutions of ~x ′ = A~x , then any linear combination of ~x1 and ~x2 is also a
solution.

Proof. Define L[~x ] = ~x ′ − A~x . By Theorem 1.3.2, L is a linear operator.
Since ~x1 and ~x2 are solutions of ~x ′ = A~x , then L[x1] = L[~x2] = ~0. So for
c1, c2 ∈ R, we have

L[c1~x1 + c2~x2] = c1L[~x1] + c2L[~x2] = ~0 +~0 = ~0,

so that L[c1~x1 + c2~x2] = ~0, or (c1~x1 + c2~x2)
′ = A(c1~x1 + c2~x2). So a linear

combination of ~x1 and ~x2 is a solution to ~x ′ = A~x , as claimed.
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Theorem 1.3.4

Theorem 1.3.4

Theorem 1.3.4. Let L be as in Theorem 1.3.2. If Φ is the fundamental
matrix for L[~x ] = ~0 on an interval I where A(t) is continuous, then every
solution of L[~x ] = ~0 can be written as φ~c for some constant vector ~c .

Proof. Let ~x(t) be a solution on I and let t0 ∈ I . Since the columns of Φ
are linearly independent, Φ−1(t0) exists (by Theorem 1.2.4). Let
~c = Φ−1(t0)~x(t0). Then as seen above, ~y(t) = Φ(t)~c is a solution to
L[~x ] = ~0.

Also,

~y(t0) = Φ(t0)~c = Φ(t0)(Φ
−1(t0)~x(t0)) = ~x(t0).

Since this holds for all t0 ∈ I , then ~x(t) = ~y(t) = Φ(t)~c .
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