Advanced Differential Equations

Chapter 1. Systems of Linear Differential Equations

Section 1.3. The Structure of Solutions of Homogeneous Linear Systems—Proofs of Theorems

Table of contents

(1) Theorem 1.3.2
(2) Theorem 1.3.3
(3) Theorem 1.3.4

Theorem 1.3.2

Theorem 1.3.2. If $A(t)$ is an $n \times n$ matrix of continuous functions on an interval I, then $L[\vec{x}]=\vec{x}^{\prime}-A \vec{x}$ is a linear operator.

Proof. Let $\vec{x}_{1}(t)$ and $\vec{x}_{2}(t)$ be differentiable vector functions and let $c_{1}, c_{2} \in \mathbb{R}$. Then
$L\left[c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}\right]=\left(c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}\right)^{\prime}-A\left(c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}\right)=c_{1} \vec{x}_{1}^{\prime}+c_{2} \vec{x}_{2}^{\prime}-c_{1} A \vec{x}_{1}-c_{2} A \vec{x}_{2}$ $=c_{1}\left(\vec{x}_{1}^{\prime}-A \vec{x}_{1}\right)+c_{2}\left(\vec{x}_{2}^{\prime}-A \vec{x}_{2}\right)=c_{1} L\left[\vec{x}_{1}\right]+c_{2} L\left[\vec{x}_{1}\right]$.

So L is linear.

Theorem 1.3.2

Theorem 1.3.2. If $A(t)$ is an $n \times n$ matrix of continuous functions on an interval I, then $L[\vec{x}]=\vec{x}^{\prime}-A \vec{x}$ is a linear operator.

Proof. Let $\vec{x}_{1}(t)$ and $\vec{x}_{2}(t)$ be differentiable vector functions and let $c_{1}, c_{2} \in \mathbb{R}$. Then
$L\left[c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}\right]=\left(c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}\right)^{\prime}-A\left(c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}\right)=c_{1} \vec{x}_{1}^{\prime}+c_{2} \vec{x}_{2}^{\prime}-c_{1} A \vec{x}_{1}-c_{2} A \vec{x}_{2}$ $=c_{1}\left(\vec{x}_{1}^{\prime}-A \vec{x}_{1}\right)+c_{2}\left(\vec{x}_{2}^{\prime}-A \vec{x}_{2}\right)=c_{1} L\left[\vec{x}_{1}\right]+c_{2} L\left[\vec{x}_{1}\right]$.

So L is linear.

Theorem 1.3.3

Theorem 1.3.3. Let L and A be as in Theorem 1.3.2. If \vec{x}_{1} and \vec{x}_{2} are solutions of $\vec{x}^{\prime}=A \vec{x}$, then any linear combination of \vec{x}_{1} and \vec{x}_{2} is also a solution.

Proof. Define $L[\vec{x}]=\vec{x}^{\prime}-A \vec{x}$. By Theorem 1.3.2, L is a linear operator. Since \vec{x}_{1} and \vec{x}_{2} are solutions of $\vec{x}^{\prime}=A \vec{x}$, then $L\left[x_{1}\right]=L\left[\vec{x}_{2}\right]=\overrightarrow{0}$. So for $c_{1}, c_{2} \in \mathbb{R}$, we have

$$
L\left[c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}\right]=c_{1} L\left[\vec{x}_{1}\right]+c_{2} L\left[\vec{x}_{2}\right]=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0},
$$

so that $L\left[c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}\right]=\overrightarrow{0}$, or $\left(c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}\right)^{\prime}=A\left(c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}\right)$. So a linear combination of \vec{x}_{1} and \vec{x}_{2} is a solution to $\vec{x}^{\prime}=A \vec{x}$, as claimed.

Theorem 1.3.3

Theorem 1.3.3. Let L and A be as in Theorem 1.3.2. If \vec{x}_{1} and \vec{x}_{2} are solutions of $\vec{x}^{\prime}=A \vec{x}$, then any linear combination of \vec{x}_{1} and \vec{x}_{2} is also a solution.

Proof. Define $L[\vec{x}]=\vec{x}^{\prime}-A \vec{x}$. By Theorem 1.3.2, L is a linear operator. Since \vec{x}_{1} and \vec{x}_{2} are solutions of $\vec{x}^{\prime}=A \vec{x}$, then $L\left[x_{1}\right]=L\left[\vec{x}_{2}\right]=\overrightarrow{0}$. So for $c_{1}, c_{2} \in \mathbb{R}$, we have

$$
L\left[c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}\right]=c_{1} L\left[\vec{x}_{1}\right]+c_{2} L\left[\vec{x}_{2}\right]=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0},
$$

so that $L\left[c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}\right]=\overrightarrow{0}$, or $\left(c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}\right)^{\prime}=A\left(c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}\right)$. So a linear combination of \vec{x}_{1} and \vec{x}_{2} is a solution to $\vec{x}^{\prime}=A \vec{x}$, as claimed.

Theorem 1.3.4

Theorem 1.3.4. Let L be as in Theorem 1.3.2. If Φ is the fundamental matrix for $L[\vec{x}]=\overrightarrow{0}$ on an interval I where $A(t)$ is continuous, then every solution of $L[\vec{x}]=\overrightarrow{0}$ can be written as $\phi \vec{c}$ for some constant vector \vec{c}.

Proof. Let $\vec{x}(t)$ be a solution on $/$ and let $t_{0} \in I$. Since the columns of Φ are linearly independent, $\Phi^{-1}\left(t_{0}\right)$ exists (by Theorem 1.2.4). Let $\vec{c}=\Phi^{-1}\left(t_{0}\right) \vec{x}\left(t_{0}\right)$. Then as seen above, $\vec{y}(t)=\Phi(t) \vec{c}$ is a solution to $L[\vec{x}]=\overrightarrow{0}$.

Theorem 1.3.4

Theorem 1.3.4. Let L be as in Theorem 1.3.2. If Φ is the fundamental matrix for $L[\vec{x}]=\overrightarrow{0}$ on an interval I where $A(t)$ is continuous, then every solution of $L[\vec{x}]=\overrightarrow{0}$ can be written as $\phi \vec{c}$ for some constant vector \vec{c}.

Proof. Let $\vec{x}(t)$ be a solution on I and let $t_{0} \in I$. Since the columns of Φ are linearly independent, $\Phi^{-1}\left(t_{0}\right)$ exists (by Theorem 1.2.4). Let $\vec{c}=\Phi^{-1}\left(t_{0}\right) \vec{x}\left(t_{0}\right)$. Then as seen above, $\vec{y}(t)=\Phi(t) \vec{c}$ is a solution to $L[\vec{x}]=\overrightarrow{0}$. Also,

$$
\vec{y}\left(t_{0}\right)=\Phi\left(t_{0}\right) \vec{c}=\Phi\left(t_{0}\right)\left(\Phi^{-1}\left(t_{0}\right) \vec{x}\left(t_{0}\right)\right)=\vec{x}\left(t_{0}\right) .
$$

Since this holds for all $t_{0} \in I$, then $\vec{x}(t)=\vec{y}(t)=\Phi(t) \vec{c}$.

Theorem 1.3.4

Theorem 1.3.4. Let L be as in Theorem 1.3.2. If Φ is the fundamental matrix for $L[\vec{x}]=\overrightarrow{0}$ on an interval I where $A(t)$ is continuous, then every solution of $L[\vec{x}]=\overrightarrow{0}$ can be written as $\phi \vec{c}$ for some constant vector \vec{c}.

Proof. Let $\vec{x}(t)$ be a solution on I and let $t_{0} \in I$. Since the columns of Φ are linearly independent, $\Phi^{-1}\left(t_{0}\right)$ exists (by Theorem 1.2.4). Let $\vec{c}=\Phi^{-1}\left(t_{0}\right) \vec{x}\left(t_{0}\right)$. Then as seen above, $\vec{y}(t)=\Phi(t) \vec{c}$ is a solution to $L[\vec{x}]=\overrightarrow{0}$. Also,

$$
\vec{y}\left(t_{0}\right)=\Phi\left(t_{0}\right) \vec{c}=\Phi\left(t_{0}\right)\left(\Phi^{-1}\left(t_{0}\right) \vec{x}\left(t_{0}\right)\right)=\vec{x}\left(t_{0}\right) .
$$

Since this holds for all $t_{0} \in I$, then $\vec{x}(t)=\vec{y}(t)=\Phi(t) \vec{c}$.

