Advanced Differential Equations

Chapter 1. Systems of Linear Differential Equations
Section 1.4. Matrix Analysis and Matrix Exponentiation—Proofs of
Theorems
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Theorem 1.4.A

Theorem 1.4.A. Let A be an R x R matrix. Then:

5. ||AX|| < ||AJl||X|| for X an R-vector.
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Theorem 1.4.A

Theorem 1.4.A. Let A be an R x R matrix. Then:
5. ||AX|| < ||AJl||X|| for X an R-vector.

Proof. (This is Exercise 1.4.2.) We have
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Theorem 1.4.1

Theorem 1.4.1. Every Cauchy sequence of matrices (with real entries) A,
has a limit.
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Theorem 1.4.1

Theorem 1.4.1

Theorem 1.4.1. Every Cauchy sequence of matrices (with real entries) A,
has a limit.

Proof. Let aZ. be the (i, /)th entry of matrix A,. Then

|ajj — af'| < [|[An — Aml| for all n,m. So the sequence of (i, ) entries form
a Cauchy sequence of real numbers and therefore converges to say a;;. Let
A = [a]. For e >0, choose Nj; such that [a; — aff| < /R? for all n > Nj;.
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Theorem 1.4.1

Theorem 1.4.1. Every Cauchy sequence of matrices (with real entries) A,
has a limit.

Proof. Let aZ. be the (i, /)th entry of matrix A,. Then

|ajj — af'| < [|[An — Aml| for all n,m. So the sequence of (i, ) entries form
a Cauchy sequence of real numbers and therefore converges to say a;;. Let
A = [a]. For e >0, choose Nj; such that [a; — aff| < /R? for all n > Nj;.
Let N = max{N;}. Then

1A= Anll = laj — af| < R*(e/R?) =«
i

for n > N. Therefore A, — A. O
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Theorem 1.4.2

Theorem 1.4.2. The series | + Y 72 ; A™.n! converges for all square
matrices A.
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Theorem 1.4.2

Theorem 1.4.2

Theorem 1.4.2. The series | + Y 72 ; A™.n! converges for all square
matrices A.

Proof. Consider the partial sums S, = >_7_, AK/k!. We have
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Theorem 1.4.2

Theorem 1.4.2. The series | + Y 72 ; A™.n! converges for all square
matrices A.

Proof. Consider the partial sums S, = >_7_, AK/k!. We have

Ak n Ak n Allk oo Allk
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k=m+1 k=m+1 ’ k=m+1 ’ k=m+1

Hsn - SmH =

Now Y32, ||AlK/k! = ellAll so m can be chosen sufficiently large so that
)y |A||%/k! < ¢ for any given €. So, S, is Cauchy and so
Yoo A/nl converges. O
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Theorem 1.4.4

Theorem 1.4.4. For any square matrix M, det(eM) # 0.
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Theorem 1.4.4

Theorem 1.4.4

Theorem 1.4.4. For any square matrix M, det(eM) # 0.

Proof. (This is Exercise 1.4.10.) By Exercise 1.4.7, if AB = BA then
eeB = eA*B. Since M and —M commute under multiplication (by
Exercise 1.4.9), eMe™ = &0 = 7. So eM has as its inverse e=™ and e
is invertible. So det(eM) # 0, as claimed. O
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