Advanced Differential Equations

Chapter 1. Systems of Linear Differential Equations Section 1.4. Matrix Analysis and Matrix Exponentiation—Proofs of Theorems

Theorem 1.4.A. Let A be an $R \times R$ matrix. Then: 5. $||A\vec{x}|| \le ||A|| ||\vec{x}||$ for \vec{x} an R-vector.

Proof. (This is Exercise 1.4.2.) We have

$$||A\vec{x}|| = ||[b_j]^T|| = \left\| \left[\sum_{i=1}^R a_{ji} x_i \right] \right\| = \sum_{j=1}^R \left| \sum_{i=1}^R a_{ji} x_i \right|$$

$$\leq \sum_{j=1}^{R} \sum_{i=1}^{R} |a_{ji}x_i| = \sum_{i=1}^{R} |x_i| \sum_{j=1}^{R} |a_{ji}| \leq \sum_{i=1}^{R} \sum_{i'=1}^{R} |x_{i'}| \sum_{j=1}^{R} |a_{ji}|$$
$$= \sum_{i=1}^{R} |x_{i'}| \sum_{i=1}^{R} \sum_{j=1}^{R} |a_{ji}| = \|\vec{x}\| \|A\|.$$

Theorem 1.4.A. Let A be an $R \times R$ matrix. Then: 5. $||A\vec{x}|| \le ||A|| ||\vec{x}||$ for \vec{x} an R-vector.

Proof. (This is Exercise 1.4.2.) We have

$$||A\vec{x}|| = ||[b_j]^T|| = \left\| \left[\sum_{i=1}^R a_{ji} x_i \right] \right\| = \sum_{j=1}^R \left| \sum_{i=1}^R a_{ji} x_i \right|$$

$$\leq \sum_{j=1}^{R} \sum_{i=1}^{R} |a_{ji}x_i| = \sum_{i=1}^{R} |x_i| \sum_{j=1}^{R} |a_{ji}| \leq \sum_{i=1}^{R} \sum_{i'=1}^{R} |x_{i'}| \sum_{j=1}^{R} |a_{ji}|$$
$$= \sum_{i=1}^{R} |x_{i'}| \sum_{i=1}^{R} \sum_{j=1}^{R} |a_{ji}| = \|\vec{x}\| \|A\|.$$

Theorem 1.4.1. Every Cauchy sequence of matrices (with real entries) A_n has a limit.

Proof. Let a_{ij}^p be the (i, j)th entry of matrix A_p . Then $|a_{ij}^n - a_{ij}^m| \le ||A_n - A_m||$ for all n, m. So the sequence of (i, j) entries form a Cauchy sequence of real numbers and therefore converges to say a_{ij} . Let $A = [a_{ij}]$. For $\varepsilon > 0$, choose N_{ij} such that $|a_{ij} - a_{ij}^n| < \varepsilon/R^2$ for all $n > N_{ij}$.

Theorem 1.4.1. Every Cauchy sequence of matrices (with real entries) A_n has a limit.

Proof. Let a_{ij}^p be the (i, j)th entry of matrix A_p . Then $|a_{ij}^n - a_{ij}^m| \le ||A_n - A_m||$ for all n, m. So the sequence of (i, j) entries form a Cauchy sequence of real numbers and therefore converges to say a_{ij} . Let $A = [a_{ij}]$. For $\varepsilon > 0$, choose N_{ij} such that $|a_{ij} - a_{ij}^n| < \varepsilon/R^2$ for all $n > N_{ij}$. Let $N = \max\{N_{ij}\}$. Then

$$||A - A_n|| = \sum_{i,j} |a_{ij} - a_{ij}^n| < R^2(\varepsilon/R^2) = \varepsilon$$

for $n \geq N$. Therefore $A_n \rightarrow A$.

Theorem 1.4.1. Every Cauchy sequence of matrices (with real entries) A_n has a limit.

Proof. Let a_{ij}^p be the (i, j)th entry of matrix A_p . Then $|a_{ij}^n - a_{ij}^m| \le ||A_n - A_m||$ for all n, m. So the sequence of (i, j) entries form a Cauchy sequence of real numbers and therefore converges to say a_{ij} . Let $A = [a_{ij}]$. For $\varepsilon > 0$, choose N_{ij} such that $|a_{ij} - a_{ij}^n| < \varepsilon/R^2$ for all $n > N_{ij}$. Let $N = \max\{N_{ij}\}$. Then

$$\|A - A_n\| = \sum_{i,j} |a_{ij} - a_{ij}^n| < R^2(\varepsilon/R^2) = \varepsilon$$

for $n \ge N$. Therefore $A_n \to A$.

Theorem 1.4.2. The series $I + \sum_{n=1}^{\infty} A^n \cdot n!$ converges for all square matrices A.

Proof. Consider the partial sums $S_n = \sum_{k=0}^n A^k / k!$. We have

$$\|S_n - S_m\| = \left\|\sum_{k=m+1}^n \frac{A^k}{k!}\right\| \le \sum_{k=m+1}^n \frac{\|A^k\|}{k!} \le \sum_{k=m+1}^n \frac{\|A\|^k}{k!} \le \sum_{k=m+1}^\infty \frac{\|A\|^k}{k!}$$

Theorem 1.4.2. The series $I + \sum_{n=1}^{\infty} A^n \cdot n!$ converges for all square matrices A.

Proof. Consider the partial sums $S_n = \sum_{k=0}^n A^k / k!$. We have

$$\|S_n - S_m\| = \left\|\sum_{k=m+1}^n \frac{A^k}{k!}\right\| \le \sum_{k=m+1}^n \frac{\|A^k\|}{k!} \le \sum_{k=m+1}^n \frac{\|A\|^k}{k!} \le \sum_{k=m+1}^\infty \frac{\|A\|^k}{k!}$$

Now $\sum_{k=0}^{\infty} ||A||^k / k! = e^{||A||}$, so *m* can be chosen sufficiently large so that $\sum_{k=m+1}^{n} ||A||^k / k! < \varepsilon$ for any given ε . So, S_n is Cauchy and so $\sum_{n=0}^{\infty} A^n / n!$ converges.

Theorem 1.4.2. The series $I + \sum_{n=1}^{\infty} A^n \cdot n!$ converges for all square matrices A.

Proof. Consider the partial sums $S_n = \sum_{k=0}^n A^k / k!$. We have

$$\|S_n - S_m\| = \left\|\sum_{k=m+1}^n \frac{A^k}{k!}\right\| \le \sum_{k=m+1}^n \frac{\|A^k\|}{k!} \le \sum_{k=m+1}^n \frac{\|A\|^k}{k!} \le \sum_{k=m+1}^\infty \frac{\|A\|^k}{k!}$$

Now $\sum_{k=0}^{\infty} ||A||^k / k! = e^{||A||}$, so *m* can be chosen sufficiently large so that $\sum_{k=m+1}^{n} ||A||^k / k! < \varepsilon$ for any given ε . So, S_n is Cauchy and so $\sum_{n=0}^{\infty} A^n / n!$ converges.

Theorem 1.4.4. For any square matrix M, det $(e^M) \neq 0$.

Proof. (This is Exercise 1.4.10.) By Exercise 1.4.7, if AB = BA then $e^A e^B = e^{A+B}$. Since M and -M commute under multiplication (by Exercise 1.4.9), $e^M e^{-M} = e^0 = \mathcal{I}$. So e^M has as its inverse e^{-M} and e^M is invertible. So det $(e^M) \neq 0$, as claimed.

Theorem 1.4.4. For any square matrix M, det $(e^M) \neq 0$.

Proof. (This is Exercise 1.4.10.) By Exercise 1.4.7, if AB = BA then $e^A e^B = e^{A+B}$. Since M and -M commute under multiplication (by Exercise 1.4.9), $e^M e^{-M} = e^0 = \mathcal{I}$. So e^M has as its inverse e^{-M} and e^M is invertible. So det $(e^M) \neq 0$, as claimed.