Advanced Differential Equations

Chapter 1. Systems of Linear Differential Equations

Section 1.4. Matrix Analysis and Matrix Exponentiation—Proofs of Theorems

Table of contents

(1) Theorem 1.4.A
(2) Theorem 1.4.1
(3) Theorem 1.4.2
(4) Theorem 1.4.4

Theorem 1.4.A

Theorem 1.4.A. Let A be an $R \times R$ matrix. Then:
5. $\|A \vec{x}\| \leq\|A\|\|\vec{x}\|$ for \vec{x} an R-vector.

Proof. (This is Exercise 1.4.2.) We have

Theorem 1.4.A

Theorem 1.4.A. Let A be an $R \times R$ matrix. Then: 5. $\|A \vec{x}\| \leq\|A\|\|\vec{x}\|$ for \vec{x} an R-vector.

Proof. (This is Exercise 1.4.2.) We have

$$
\begin{gathered}
\|A \vec{x}\|=\left\|\left[b_{j}\right]^{T}\right\|=\left\|\left[\sum_{i=1}^{R} a_{j i} x_{i}\right]\right\|=\sum_{j=1}^{R}\left|\sum_{i=1}^{R} a_{j i} x_{i}\right| \\
\leq \sum_{j=1}^{R} \sum_{i=1}^{R}\left|a_{j i} x_{i}\right|=\sum_{i=1}^{R}\left|x_{i}\right| \sum_{j=1}^{R}\left|a_{j i}\right| \leq \sum_{i=1}^{R} \sum_{i^{\prime}=1}^{R}\left|x_{i^{\prime}}\right| \sum_{j=1}^{R}\left|a_{j i}\right| \\
=\sum_{i=1}^{R}\left|x_{i^{\prime}}\right| \sum_{i=1}^{R} \sum_{j=1}^{R}\left|a_{j i}\right|=\|\vec{x}\|\|A\| .
\end{gathered}
$$

Theorem 1.4.1

Theorem 1.4.1. Every Cauchy sequence of matrices (with real entries) A_{n} has a limit.

Proof. Let $a_{i j}^{P}$ be the (i, j) th entry of matrix A_{p}. Then $\left|a_{i j}^{n}-a_{i j}^{m}\right| \leq\left\|A_{n}-A_{m}\right\|$ for all n, m. So the sequence of (i, j) entries form a Cauchy sequence of real numbers and therefore converges to say $a_{i j}$. Let $A=\left[a_{i j}\right]$. For $\varepsilon>0$, choose $N_{i j}$ such that $\left|a_{i j}-a_{i j}^{n}\right|<\varepsilon / R^{2}$ for all $n>N_{i j}$

Theorem 1.4.1

Theorem 1.4.1. Every Cauchy sequence of matrices (with real entries) A_{n} has a limit.

Proof. Let $a_{i j}^{p}$ be the (i, j) th entry of matrix A_{p}. Then $\left|a_{i j}^{n}-a_{i j}^{m}\right| \leq\left\|A_{n}-A_{m}\right\|$ for all n, m. So the sequence of (i, j) entries form a Cauchy sequence of real numbers and therefore converges to say $a_{i j}$. Let $A=\left[a_{i j}\right]$. For $\varepsilon>0$, choose $N_{i j}$ such that $\left|a_{i j}-a_{i j}^{n}\right|<\varepsilon / R^{2}$ for all $n>N_{i j}$. Let $N=\max \left\{N_{i j}\right\}$. Then

$$
\left\|A-A_{n}\right\|=\sum_{i, j}\left|a_{i j}-a_{i j}^{n}\right|<R^{2}\left(\varepsilon / R^{2}\right)=\varepsilon
$$

for $n \geq N$. Therefore $A_{n} \rightarrow A$.

Theorem 1.4.1

Theorem 1.4.1. Every Cauchy sequence of matrices (with real entries) A_{n} has a limit.

Proof. Let $a_{i j}^{p}$ be the (i, j) th entry of matrix A_{p}. Then $\left|a_{i j}^{n}-a_{i j}^{m}\right| \leq\left\|A_{n}-A_{m}\right\|$ for all n, m. So the sequence of (i, j) entries form a Cauchy sequence of real numbers and therefore converges to say $a_{i j}$. Let $A=\left[a_{i j}\right]$. For $\varepsilon>0$, choose $N_{i j}$ such that $\left|a_{i j}-a_{i j}^{n}\right|<\varepsilon / R^{2}$ for all $n>N_{i j}$. Let $N=\max \left\{N_{i j}\right\}$. Then

$$
\left\|A-A_{n}\right\|=\sum_{i, j}\left|a_{i j}-a_{i j}^{n}\right|<R^{2}\left(\varepsilon / R^{2}\right)=\varepsilon
$$

for $n \geq N$. Therefore $A_{n} \rightarrow A$.

Theorem 1.4.2

Theorem 1.4.2. The series $I+\sum_{n=1}^{\infty} A^{n}$.n! converges for all square matrices A.

Proof. Consider the partial sums $S_{n}=\sum_{k=0}^{n} A^{k} / k!$. We have

Theorem 1.4.2

Theorem 1.4.2. The series $I+\sum_{n=1}^{\infty} A^{n}$.n! converges for all square matrices A.

Proof. Consider the partial sums $S_{n}=\sum_{k=0}^{n} A^{k} / k!$. We have
$\left\|S_{n}-S_{m}\right\|=\left\|\sum_{k=m+1}^{n} \frac{A^{k}}{k!}\right\| \leq \sum_{k=m+1}^{n} \frac{\left\|A^{k}\right\|}{k!} \leq \sum_{k=m+1}^{n} \frac{\|A\|^{k}}{k!} \leq \sum_{k=m+1}^{\infty} \frac{\|A\|^{k}}{k!}$.
Now $\sum_{k=0}^{\infty}\|A\|^{k} / k!=e^{\|A\|}$, so m can be chosen sufficiently large so that
$\sum_{k=m+1}^{n}\|A\|^{k} / k!<\varepsilon$ for any given ε. So, S_{n} is Cauchy and so
$\sum_{n=0}^{\infty} A^{n} / n!$ converges.

Theorem 1.4.2

Theorem 1.4.2. The series $I+\sum_{n=1}^{\infty} A^{n}$.n! converges for all square matrices A.

Proof. Consider the partial sums $S_{n}=\sum_{k=0}^{n} A^{k} / k!$. We have
$\left\|S_{n}-S_{m}\right\|=\left\|\sum_{k=m+1}^{n} \frac{A^{k}}{k!}\right\| \leq \sum_{k=m+1}^{n} \frac{\left\|A^{k}\right\|}{k!} \leq \sum_{k=m+1}^{n} \frac{\|A\|^{k}}{k!} \leq \sum_{k=m+1}^{\infty} \frac{\|A\|^{k}}{k!}$.
Now $\sum_{k=0}^{\infty}\|A\|^{k} / k!=e^{\|A\|}$, so m can be chosen sufficiently large so that $\sum_{k=m+1}^{n}\|A\|^{k} / k!<\varepsilon$ for any given ε. So, S_{n} is Cauchy and so $\sum_{n=0}^{\infty} A^{n} / n!$ converges.

Theorem 1.4.4

Theorem 1.4.4. For any square matrix $M, \operatorname{det}\left(e^{M}\right) \neq 0$.

Proof. (This is Exercise 1.4.10.) By Exercise 1.4.7, if $A B=B A$ then $e^{A} e^{B}=e^{A+B}$. Since M and $-M$ commute under multiplication (by Exercise 1.4.9), $e^{M} e^{-M}=e^{0}=\boldsymbol{I}$. So e^{M} has as its inverse e^{-M} and e^{M} is invertible. So $\operatorname{det}\left(e^{M}\right) \neq 0$, as claimed.

Theorem 1.4.4

Theorem 1.4.4. For any square matrix $M, \operatorname{det}\left(e^{M}\right) \neq 0$.

Proof. (This is Exercise 1.4.10.) By Exercise 1.4.7, if $A B=B A$ then $e^{A} e^{B}=e^{A+B}$. Since M and $-M$ commute under multiplication (by Exercise 1.4.9), $e^{M} e^{-M}=e^{0}=\mathcal{I}$. So e^{M} has as its inverse e^{-M} and e^{M} is invertible. So $\operatorname{det}\left(e^{M}\right) \neq 0$, as claimed.

