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Chapter 1. Systems of Linear Differential Equations
Section 1.4. Matrix Analysis and Matrix Exponentiation—Proofs of

Theorems
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Theorem 1.4.A

Theorem 1.4.A

Theorem 1.4.A. Let A be an R × R matrix. Then:

5. ‖A~x‖ ≤ ‖A‖‖~x‖ for ~x an R-vector.

Proof. (This is Exercise 1.4.2.) We have

‖A~x‖ = ‖[bj ]
T‖ =

∥∥∥∥∥
[

R∑
i=1

ajixi

]∥∥∥∥∥ =
R∑

j=1

∣∣∣∣∣
R∑

i=1

ajixi

∣∣∣∣∣
≤

R∑
j=1

R∑
i=1

|ajixi | =
R∑

i=1

|xi |
R∑

j=1

|aji | ≤
R∑

i=1

R∑
i ′=1

|xi ′ |
R∑

j=1

|aji |

=
R∑

i=1

|xi ′ |
R∑

i=1

R∑
j=1

|aji | = ‖~x‖‖A‖.
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Theorem 1.4.1

Theorem 1.4.1

Theorem 1.4.1. Every Cauchy sequence of matrices (with real entries) An

has a limit.

Proof. Let ap
ij be the (i , j)th entry of matrix Ap. Then

|an
ij − am

ij | ≤ ‖An − Am‖ for all n,m. So the sequence of (i , j) entries form
a Cauchy sequence of real numbers and therefore converges to say aij . Let
A = [aij ]. For ε > 0, choose Nij such that |aij − an

ij | < ε/R2 for all n > Nij .

Let N = max{Nij}. Then

‖A− An‖ =
∑
i ,j

|aij − an
ij | < R2(ε/R2) = ε

for n ≥ N. Therefore An → A.
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Theorem 1.4.2

Theorem 1.4.2

Theorem 1.4.2. The series I +
∑∞

n=1 An.n! converges for all square
matrices A.

Proof. Consider the partial sums Sn =
∑n

k=0 Ak/k!. We have

‖Sn − Sm‖ =

∥∥∥∥∥
n∑

k=m+1

Ak

k!

∥∥∥∥∥ ≤
n∑

k=m+1

‖Ak‖
k!

≤
n∑

k=m+1

‖A‖k

k!
≤

∞∑
k=m+1

‖A‖k

k!
.

Now
∑∞

k=0 ‖A‖k/k! = e‖A‖, so m can be chosen sufficiently large so that∑n
k=m+1 ‖A‖k/k! < ε for any given ε. So, Sn is Cauchy and so∑∞
n=0 An/n! converges.
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Theorem 1.4.4

Theorem 1.4.4

Theorem 1.4.4. For any square matrix M, det(eM) 6= 0.

Proof. (This is Exercise 1.4.10.) By Exercise 1.4.7, if AB = BA then
eAeB = eA+B . Since M and −M commute under multiplication (by
Exercise 1.4.9), eMe−M = e0 = I. So eM has as its inverse e−M and eM

is invertible. So det(eM) 6= 0, as claimed.
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