Advanced Differential Equations

Chapter 1. Systems of Linear Differential Equations

Section 1.6. The Constant Coefficient Case: Complex and Distinct Eigenvalues-Proofs of Theorems

Table of contents

(1) Theorem 1.6.1

Theorem 1.6.1

Theorem 1.6.1. If $\vec{\varphi}(t)$ is a solution of $\vec{x}^{\prime}=A \vec{x}$ where A is a constant matrix (with real entries) then $\operatorname{Re}(\vec{\varphi}(t))$ and $\operatorname{Im}(\vec{\varphi}(t))$ are also solutions.

Proof. Let $\vec{\varphi}(t)=\vec{u}(t)+i \vec{v}(t)$. Then

$$
\vec{\varphi}^{\prime}(t)=\vec{u}^{\prime}(t)+i \vec{v}^{\prime}(t)=A \vec{\varphi}(t)=A \vec{u}(t)+i A \vec{v}(t) .
$$

So $\vec{u}^{\prime}(t)=A \vec{u}(t)$ and $\vec{v}^{\prime}(t)=A \vec{v}(t)$, so that $\vec{u}(t)$ and $\vec{v}(t)$ are also solutions to $\vec{x}^{\prime}=A \vec{x}$, as claimed.

Theorem 1.6.1

Theorem 1.6.1. If $\vec{\varphi}(t)$ is a solution of $\vec{x}^{\prime}=A \vec{x}$ where A is a constant matrix (with real entries) then $\operatorname{Re}(\vec{\varphi}(t))$ and $\operatorname{Im}(\vec{\varphi}(t))$ are also solutions.

Proof. Let $\vec{\varphi}(t)=\vec{u}(t)+i \vec{v}(t)$. Then

$$
\vec{\varphi}^{\prime}(t)=\vec{u}^{\prime}(t)+i \vec{v}^{\prime}(t)=A \vec{\varphi}(t)=A \vec{u}(t)+i A \vec{v}(t) .
$$

So $\vec{u}^{\prime}(t)=A \vec{u}(t)$ and $\vec{v}^{\prime}(t)=A \vec{v}(t)$, so that $\vec{u}(t)$ and $\vec{v}(t)$ are also solutions to $\vec{x}^{\prime}=A \vec{x}$, as claimed.

