Advanced Differential Equations

Chapter 1. Systems of Linear Differential Equations Section 1.6. The Constant Coefficient Case: Complex and Distinct Eigenvalues—Proofs of Theorems

Table of contents

Theorem 1.6.1. If $\vec{\varphi}(t)$ is a solution of $\vec{x}' = A\vec{x}$ where A is a constant matrix (with real entries) then $\text{Re}(\vec{\varphi}(t))$ and $\text{Im}(\vec{\varphi}(t))$ are also solutions.

Proof. Let $\vec{\varphi}(t) = \vec{u}(t) + i\vec{v}(t)$. Then

$$\vec{\varphi}'(t) = \vec{u}'(t) + i\vec{v}'(t) = A\vec{\varphi}(t) = A\vec{u}(t) + iA\vec{v}(t).$$

So $\vec{u}'(t) = A\vec{u}(t)$ and $\vec{v}'(t) = A\vec{v}(t)$, so that $\vec{u}(t)$ and $\vec{v}(t)$ are also solutions to $\vec{x}' = A\vec{x}$, as claimed.

Theorem 1.6.1. If $\vec{\varphi}(t)$ is a solution of $\vec{x}' = A\vec{x}$ where A is a constant matrix (with real entries) then $\text{Re}(\vec{\varphi}(t))$ and $\text{Im}(\vec{\varphi}(t))$ are also solutions.

Proof. Let $\vec{\varphi}(t) = \vec{u}(t) + i\vec{v}(t)$. Then

$$\vec{\varphi}'(t) = \vec{u}'(t) + i\vec{v}'(t) = A\vec{\varphi}(t) = A\vec{u}(t) + iA\vec{v}(t).$$

So $\vec{u}'(t) = A\vec{u}(t)$ and $\vec{v}'(t) = A\vec{v}(t)$, so that $\vec{u}(t)$ and $\vec{v}(t)$ are also solutions to $\vec{x}' = A\vec{x}$, as claimed.