Advanced Differential Equations

Chapter 1. Systems of Linear Differential Equations Section 1.8. General Linear Systems—Proofs of Theorems

Table of contents

Theorem 1.8.1. If $\vec{x}(t)$ is a solution of

$$\vec{y}' - A\vec{y} = \vec{e}(t) \tag{8.2}$$

 $(\vec{e}(t) \text{ is called a$ *forcing term* $})$, then any solution $\vec{\Psi}(t)$ of (8.2) can be written as

$$ec{\Psi}(t)=\Phi(t)ec{c}+ec{x}(t)$$

where $\boldsymbol{\Phi}$ is a fundamental matrix for

$$\vec{y}' - A\vec{y} = \vec{0} \tag{8.3}$$

and \vec{c} is a constant.

Proof. Let $L(\vec{y}] = \vec{y}' = A\vec{y}$ and let $L(\vec{\Psi}(t)] = \vec{e}(t)$. Then $L[\vec{\Psi}(t) - \vec{x}(t)] = \vec{c}(t) - \vec{e}(t) = \vec{0}$. So $\vec{\Psi}(t) = \vec{x}(t)$ is a solution of (8.3). By Theorem 1.3.4, $\vec{\Psi}(t) - \vec{x}(t) = \Psi(t)\vec{c}$ and so $\vec{\Psi}(t) = \Psi(t)\vec{c} + \vec{x}(t)$.

Theorem 1.8.1. If $\vec{x}(t)$ is a solution of

$$\vec{y}' - A\vec{y} = \vec{e}(t) \tag{8.2}$$

 $(\vec{e}(t) \text{ is called a$ *forcing term* $})$, then any solution $\vec{\Psi}(t)$ of (8.2) can be written as

$$ec{\Psi}(t)=\Phi(t)ec{c}+ec{x}(t)$$

where Φ is a fundamental matrix for

$$\vec{y}' - A\vec{y} = \vec{0} \tag{8.3}$$

and \vec{c} is a constant.

Proof. Let $L(\vec{y}] = \vec{y}' = A\vec{y}$ and let $L(\vec{\Psi}(t)] = \vec{e}(t)$. Then $L[\vec{\Psi}(t) - \vec{x}(t)] = \vec{c}(t) - \vec{e}(t) = \vec{0}$. So $\vec{\Psi}(t) = \vec{x}(t)$ is a solution of (8.3). By Theorem 1.3.4, $\vec{\Psi}(t) - \vec{x}(t) = \Psi(t)\vec{c}$ and so $\vec{\Psi}(t) = \Psi(t)\vec{c} + \vec{x}(t)$.

Theorem 1.8.2.

$$ec{x}(t)-\Phi(t)\int_{t_0}^t\Phi^{-1}(au)ec{e}(au)\,d au$$

is a solution of $\vec{y}' = \vec{e}(t)$.

Proof. Well,

$$ec{x}'(t) = \Phi'(t) \int_{t_0}^t \Phi^{-1}(\tau) ec{e}(\tau) \, d au + \Phi(t) \Psi^{-1}(t) ec{e}(t).$$

Now $\Phi'(t) = A(t)\Phi(t)$ so

$$\vec{x}' = A(t)\Phi(t)\int_{t_0}^t \Phi^{-1}(\tau)\vec{e}(\tau) d\tau + \vec{e}(t) = A(t)\vec{x}(t)$$

Theorem 1.8.2.

$$ec{x}(t)-\Phi(t)\int_{t_0}^t \Phi^{-1}(au)ec{e}(au)\,d au$$

is a solution of $\vec{y}' = \vec{e}(t)$.

Proof. Well,

$$ec{x}'(t) = \Phi'(t) \int_{t_0}^t \Phi^{-1}(au) ec{e}(au) \, d au + \Phi(t) \Psi^{-1}(t) ec{e}(t).$$

Now $\Phi'(t) = A(t)\Phi(t)$ so

$$ec{x}'=A(t)\Phi(t)\int_{t_0}^t\Phi^{-1}(au)ec{e}(au)\,d au+ec{e}(t)=A(t)ec{x}(t).$$