Advanced Differential Equations

Chapter 1. Systems of Linear Differential Equations

Section 1.8. General Linear Systems—Proofs of Theorems

Table of contents

(1) Theorem 1.8.1
(2) Theorem 1.8.2

Theorem 1.8.1

Theorem 1.8.1. If $\vec{x}(t)$ is a solution of

$$
\begin{equation*}
\vec{y}^{\prime}-A \vec{y}=\vec{e}(t) \tag{8.2}
\end{equation*}
$$

($\vec{e}(t)$ is called a forcing term), then any solution $\vec{\Psi}(t)$ of (8.2) can be written as

$$
\vec{\Psi}(t)=\Phi(t) \vec{c}+\vec{x}(t)
$$

where Φ is a fundamental matrix for

$$
\begin{equation*}
\vec{y}^{\prime}-A \vec{y}=\overrightarrow{0} \tag{8.3}
\end{equation*}
$$

and \vec{c} is a constant.
Proof. Let $L(\vec{y}]=\vec{y}^{\prime}=A \vec{y}$ and let $L(\vec{\psi}(t)]=\vec{e}(t)$. Then
$L[\vec{\Psi}(t)-\vec{x}(t)]=\vec{c}(t)-\vec{e}(t)=\overrightarrow{0}$. So $\vec{\psi}(t)=\vec{x}(t)$ is a solution of (8.3).
By Theorem 1.3.4, $\Psi(t)-\vec{x}(t)=\Psi(t) \vec{c}$ and so $\Psi(t)=\Psi(t) \vec{c}+\vec{x}(t)$.

Theorem 1.8.1

Theorem 1.8.1. If $\vec{x}(t)$ is a solution of

$$
\begin{equation*}
\vec{y}^{\prime}-A \vec{y}=\vec{e}(t) \tag{8.2}
\end{equation*}
$$

($\vec{e}(t)$ is called a forcing term), then any solution $\vec{\Psi}(t)$ of (8.2) can be written as

$$
\vec{\Psi}(t)=\Phi(t) \vec{c}+\vec{x}(t)
$$

where Φ is a fundamental matrix for

$$
\begin{equation*}
\vec{y}^{\prime}-A \vec{y}=\overrightarrow{0} \tag{8.3}
\end{equation*}
$$

and \vec{c} is a constant.
Proof. Let $L(\vec{y}]=\vec{y}^{\prime}=A \vec{y}$ and let $L(\vec{\Psi}(t)]=\vec{e}(t)$. Then $L[\vec{\Psi}(t)-\vec{x}(t)]=\vec{c}(t)-\vec{e}(t)=\overrightarrow{0}$. So $\vec{\psi}(t)=\vec{x}(t)$ is a solution of (8.3). By Theorem 1.3.4, $\vec{\Psi}(t)-\vec{x}(t)=\Psi(t) \vec{c}$ and so $\vec{\Psi}(t)=\Psi(t) \vec{c}+\vec{x}(t)$.

Theorem 1.8.2

Theorem 1.8.2.

$$
\vec{x}(t)-\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(\tau) \vec{e}(\tau) d \tau
$$

is a solution of $\vec{y}^{\prime}=\vec{e}(t)$.
Proof. Well,

$$
\vec{x}^{\prime}(t)=\Phi^{\prime}(t) \int_{t_{0}}^{t} \Phi^{-1}(\tau) \vec{e}(\tau) d \tau+\Phi(t) \Psi^{-1}(t) \vec{e}(t) .
$$

Now $\Phi^{\prime}(t)=A(t) \Phi(t)$ so

$$
\vec{x}^{\prime}=A(t) \Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(\tau) \vec{e}(\tau) d \tau+\vec{e}(t)=A(t) \vec{x}(t) .
$$

Theorem 1.8.2

Theorem 1.8.2.

$$
\vec{x}(t)-\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(\tau) \vec{e}(\tau) d \tau
$$

is a solution of $\vec{y}^{\prime}=\vec{e}(t)$.
Proof. Well,

$$
\vec{x}^{\prime}(t)=\Phi^{\prime}(t) \int_{t_{0}}^{t} \Phi^{-1}(\tau) \vec{e}(\tau) d \tau+\Phi(t) \Psi^{-1}(t) \vec{e}(t)
$$

Now $\Phi^{\prime}(t)=A(t) \Phi(t)$ so

$$
\vec{x}^{\prime}=A(t) \Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(\tau) \vec{e}(\tau) d \tau+\vec{e}(t)=A(t) \vec{x}(t)
$$

