Advanced Differential Equations

Chapter 2. Two-Dimensional Autonomous Systems

 Section 2.2. The Phase Plane-Proofs of Theorems

Table of contents

(1) Lemma 2.2.1
(2) Theorem 2.2.2
(3) Theorem 2.2.A

Lemma 2.2.1

Lemma 2.2.1. If $\left(\varphi_{1}(t), \varphi_{2}(t)\right)$ is a solution of (1.2), then so is $\left(\varphi_{1}(t-\tau), \varphi_{2}(t-\tau)\right)$ for any $\tau \in \mathbb{R}$.

Proof. Let $\psi_{i}(t)=\varphi_{i}(t-\tau)$ for $i=1,2$. Then

$$
\psi_{1}^{\prime}(t)=\varphi_{1}^{\prime}(t-\tau)=f\left(\varphi_{1}(t-\tau), \varphi_{2}(t-\tau)=f\left(\psi_{1}(t), \psi_{2}(t)\right)\right.
$$

$$
\psi_{2}^{\prime}(t)=\varphi_{2}^{\prime}(t-\tau)=g\left(\varphi_{1}(t-\tau), \varphi_{2}(t-\tau)=g\left(\psi_{1}(t), \psi_{2}(t)\right)\right.
$$

and the result follows.

Lemma 2.2.1

Lemma 2.2.1. If $\left(\varphi_{1}(t), \varphi_{2}(t)\right)$ is a solution of (1.2), then so is $\left(\varphi_{1}(t-\tau), \varphi_{2}(t-\tau)\right)$ for any $\tau \in \mathbb{R}$.

Proof. Let $\psi_{i}(t)=\varphi_{i}(t-\tau)$ for $i=1,2$. Then

$$
\psi_{1}^{\prime}(t)=\varphi_{1}^{\prime}(t-\tau)=f\left(\varphi_{1}(t-\tau), \varphi_{2}(t-\tau)=f\left(\psi_{1}(t), \psi_{2}(t)\right)\right.
$$

and

$$
\psi_{2}^{\prime}(t)=\varphi_{2}^{\prime}(t-\tau)=g\left(\varphi_{1}(t-\tau), \varphi_{2}(t-\tau)=g\left(\psi_{1}(t), \psi_{2}(t)\right)\right.
$$

and the result follows.

Theorem 2.2.2

Theorem 2.2.2. Let f and g be continuously differentiable. Through each point $\left(x_{0}, y_{0}\right)$ there is a unique trajectory of $\begin{aligned} & x^{\prime}=f(x, y) \\ & y^{\prime}=g(x, y) .\end{aligned}$

Proof. Suppose $\left(\varphi_{1}(t), \varphi_{2}(t)\right)$ and $\left(\psi_{1}(t), \psi_{2}(t)\right)$ pass through $\left(x_{0}, y_{0}\right)$; i.e., $\varphi\left(t_{0}\right)=x_{0}=\psi_{1}\left(t_{1}\right)$ and $\varphi_{2}\left(t_{0}\right)=y_{0}=\psi_{2}\left(t_{1}\right)$. Since solutions to IVPs are unique, $\left(\varphi_{1}, \varphi_{2}\right) \neq\left(\psi_{1}, \psi_{2}\right)$ if and only if $t_{0} \neq t_{1}$. By Lemma 2.2.1, $x_{1}(t)=\varphi_{1}\left(t-t_{1}+t_{0}\right)$ and $x_{2}(t)=\varphi_{2}\left(t-t_{1}+t_{0}\right)$ are a solution of (1.2).

Theorem 2.2.2

Theorem 2.2.2. Let f and g be continuously differentiable. Through each point $\left(x_{0}, y_{0}\right)$ there is a unique trajectory of $\begin{aligned} & x^{\prime}=f(x, y) \\ & y^{\prime}=g(x, y) .\end{aligned}$

Proof. Suppose $\left(\varphi_{1}(t), \varphi_{2}(t)\right)$ and $\left(\psi_{1}(t), \psi_{2}(t)\right)$ pass through $\left(x_{0}, y_{0}\right)$; i.e., $\varphi\left(t_{0}\right)=x_{0}=\psi_{1}\left(t_{1}\right)$ and $\varphi_{2}\left(t_{0}\right)=y_{0}=\psi_{2}\left(t_{1}\right)$. Since solutions to IVPs are unique, $\left(\varphi_{1}, \varphi_{2}\right) \neq\left(\psi_{1}, \psi_{2}\right)$ if and only if $t_{0} \neq t_{1}$. By Lemma 2.2.1, $x_{1}(t)=\varphi_{1}\left(t-t_{1}+t_{0}\right)$ and $x_{2}(t)=\varphi_{2}\left(t-t_{1}+t_{0}\right)$ are a solution of (1.2). But $x_{1}\left(t_{1}\right)=\varphi_{1}\left(t_{0}\right)=x_{0}=\psi_{1}\left(t_{1}\right)$ and $x_{2}\left(t_{1}\right)=\varphi_{2}\left(t_{0}\right)=y_{0}=\psi_{2}\left(t_{1}\right)$. By Theorem 2.1.1 for IVPs, $x_{1}(t)=\psi_{1}(t)$ and $x_{2}(t)=\psi_{2}(t)$. But by Lemma 2.2.1, $\left(x_{1}, x_{2}\right)$ and $\left.\varphi_{1}, \varphi_{2}\right)$ determine the same trajectory.

Theorem 2.2.2

Theorem 2.2.2. Let f and g be continuously differentiable. Through each point $\left(x_{0}, y_{0}\right)$ there is a unique trajectory of $\begin{aligned} & x^{\prime}=f(x, y) \\ & y^{\prime}=g(x, y) .\end{aligned}$

Proof. Suppose $\left(\varphi_{1}(t), \varphi_{2}(t)\right)$ and $\left(\psi_{1}(t), \psi_{2}(t)\right)$ pass through $\left(x_{0}, y_{0}\right)$; i.e., $\varphi\left(t_{0}\right)=x_{0}=\psi_{1}\left(t_{1}\right)$ and $\varphi_{2}\left(t_{0}\right)=y_{0}=\psi_{2}\left(t_{1}\right)$. Since solutions to IVPs are unique, $\left(\varphi_{1}, \varphi_{2}\right) \neq\left(\psi_{1}, \psi_{2}\right)$ if and only if $t_{0} \neq t_{1}$. By Lemma 2.2.1, $x_{1}(t)=\varphi_{1}\left(t-t_{1}+t_{0}\right)$ and $x_{2}(t)=\varphi_{2}\left(t-t_{1}+t_{0}\right)$ are a solution of (1.2). But $x_{1}\left(t_{1}\right)=\varphi_{1}\left(t_{0}\right)=x_{0}=\psi_{1}\left(t_{1}\right)$ and $x_{2}\left(t_{1}\right)=\varphi_{2}\left(t_{0}\right)=y_{0}=\psi_{2}\left(t_{1}\right)$. By Theorem 2.1.1 for IVPs, $x_{1}(t)=\psi_{1}(t)$ and $x_{2}(t)=\psi_{2}(t)$. But by Lemma 2.2.1, $\left(x_{1}, x_{2}\right)$ and $\left.\varphi_{1}, \varphi_{2}\right)$ determine the same trajectory.

Theorem 2.2.A

Theorem 2.2.A. The only trajectory which passes through a critical point $\left(x_{0}, y_{0}\right)$ is the constant solution $x=x_{0}, y=y_{0}$.

constant solution.

Theorem 2.2.A

Theorem 2.2.A. The only trajectory which passes through a critical point $\left(x_{0}, y_{0}\right)$ is the constant solution $x=x_{0}, y=y_{0}$.

$$
x^{\prime}=f(x, y)
$$

Proof. The IVP $\begin{aligned} & y^{\prime}=g(x, y) \\ & x(0)=x_{0}\end{aligned}$ has a unique solution, so it must be the
$y(0)=y_{0}$
constant solution.

