Example. (Exercise 2.2.4.) If \(D = T^{-1}AT \) is a diagonal matrix, then the columns of \(T \) are eigenvectors of \(T \) are eigenvectors of \(A \) and the nonzero entries of \(D \) are eigenvalues of \(A \).

Proof. Suppose \(D = T^{-1}AT \) where \(D \) is diagonal. Then \(AT = TD \).

Suppose \(T = [t_{ij}] \) and \(D = [d_{ij}] \). Then the \((i,j)\) entry of \(TD \) is

\[
\sum_{k=1}^{n} t_{ik} d_{kj} = t_{ij} d_{jj}.
\]

So the \(j \)th column of \(TD \) is \([d_{ij} \ldots d_{ij}]^T\). That is, the \(j \)th column of \(TD \) is \(d_{jj} \) times the \(j \)th column of \(T \). So the \(j \)th column of \(AT \) is \(d_{jj} \) times the \(j \)th column of \(T \). Therefore, the \(j \)th column of \(T \) is an eigenvector of \(A \) with eigenvalue \(d_{jj} \). \(\square \)