Chapter 2. Two-Dimensional Autonomous Systems

Section 2.4. Critical Points of General 2-D Linear Systems—Proofs of Theorems
Example. Exercise 2.2.4
Example. (Exercise 2.4.4.) If $D = T^{-1}AT$ is a diagonal matrix, then the columns of T are eigenvectors of T are eigenvectors of A and the nonzero entries of D are eigenvalues of A.

Proof. Suppose $D = T^{-1}AT$ where D is diagonal. Then $AT = TD$. Suppose $T = [t_{ij}]$ and $D = [d_{ij}]$. Then the (i, j) entry of TD is

$$
\sum_{k=1}^{n} t_{ik}d_{kj} = t_{ij}d_{jj}.
$$

So the jth column of TD is $d_{jj} \begin{bmatrix} t_{1j} \\ t_{2j} \\ \vdots \\ t_{nj} \end{bmatrix}$. Therefore, the jth column of T is an eigenvector of A with eigenvalue d_{jj}.
Example. (Exercise 2.4.4.) If $D = T^{-1} AT$ is a diagonal matrix, then the columns of T are eigenvectors of T are eigenvectors of A and the nonzero entries of D are eigenvalues of A.

Proof. Suppose $D = T^{-1} AT$ where D is diagonal. Then $AT = TD$. Suppose $T = [t_{ij}]$ and $D = [d_{ij}]$. Then the (i, j) entry of TD is

$$
\sum_{k=1}^{n} t_{ik} d_{kj} = t_{ij} d_{jj}.
$$

So the jth column of TD is d_{jj} times the jth column of T. Therefore, the jth column of T is an eigenvector of A with eigenvalue d_{jj}.
Example. (Exercise 2.4.4.) If \(D = T^{-1}AT \) is a diagonal matrix, then the columns of \(T \) are eigenvectors of \(T \) are eigenvectors of \(A \) and the nonzero entries of \(D \) are eigenvalues of \(A \).

Proof. Suppose \(D = T^{-1}AT \) where \(D \) is diagonal. Then \(AT = TD \).

Suppose \(T = [t_{ij}] \) and \(D = [d_{ij}] \). Then the \((i, j)\) entry of \(TD \) is

\[
\sum_{k=1}^{n} t_{ik}d_{kj} = t_{ij}d_{jj}.
\]

So the \(j \)th column of \(TD \) is \(d_{jj} \)
\[
\begin{bmatrix}
t_{1j} \\
t_{2j} \\
\vdots \\
t_{nj}
\end{bmatrix}
\]

That is, the \(j \)th column of \(TD \) is \(d_{jj} \) times the \(j \)th column of \(T \). So the \(j \)th column of \(AT \) is \(d_{jj} \) times the \(j \)th column of \(T \). Therefore, the \(j \)th column of \(T \) is an eigenvector of \(A \) with eigenvalue \(d_{jj} \). \(\square \)