Advanced Differential Equations

Chapter 2. Two-Dimensional Autonomous Systems

Section 2.4. Critical Points of General 2-D Linear Systems—Proofs of Theorems

Table of contents

(1) Example. Exercise 2.2.4

Example. Exercise 2.2.4

Example. (Exercise 2.4.4.) If $D=T^{-1} A T$ is a diagonal matrix, then the columns of T are eigenvectors of T are eigenvectors of A and the nonzero entries of D are eigenvalues of A.

Proof. Suppose $D=T^{-1} A T$ where D is diagonal. Then $A T=T D$. Suppose $T=\left[t_{i j}\right]$ and $D=\left[d_{i j}\right]$. Then the (i, j) entry of $T D$ is
$\sum_{k=1}^{n} t_{i k} d_{k j}=t_{i j} d_{j j}$. So the j th column $\circ f T D$ is $d_{j j}$

Example. Exercise 2.2.4

Example. (Exercise 2.4.4.) If $D=T^{-1} A T$ is a diagonal matrix, then the columns of T are eigenvectors of T are eigenvectors of A and the nonzero entries of D are eigenvalues of A.

Proof. Suppose $D=T^{-1} A T$ where D is diagonal. Then $A T=T D$. Suppose $T=\left[t_{i j}\right]$ and $D=\left[d_{i j}\right]$. Then the (i, j) entry of $T D$ is
$\sum_{k=1}^{n} t_{i k} d_{k j}=t_{i j} d_{j j}$. So the j th column ofTD is $d_{j j}\left[\begin{array}{c}t_{1 j} \\ t_{2 j} \\ \vdots\end{array}\right]$. That is, the
j th column of $T D$ is $d_{j j}$ times the j th column of T. So the j th column of $A T$ is $d_{j j}$ times the j th column of T. Therefore, the j th column of T is an eigenvector of A with eigenvalue $d_{j j}$.

Example. Exercise 2.2.4

Example. (Exercise 2.4.4.) If $D=T^{-1} A T$ is a diagonal matrix, then the columns of T are eigenvectors of T are eigenvectors of A and the nonzero entries of D are eigenvalues of A.

Proof. Suppose $D=T^{-1} A T$ where D is diagonal. Then $A T=T D$. Suppose $T=\left[t_{i j}\right]$ and $D=\left[d_{i j}\right]$. Then the (i, j) entry of $T D$ is
$\sum_{k=1}^{n} t_{i k} d_{k j}=t_{i j} d_{j j}$. So the j th column of $f D$ is $d_{j j}\left[\begin{array}{c}t_{1 j} \\ t_{2 j} \\ \vdots\end{array}\right]$. That is, the
j th column of $T D$ is $d_{j j}$ times the j th column of T. So the j th column of $A T$ is $d_{j j}$ times the j th column of T. Therefore, the j th column of T is an eigenvector of A with eigenvalue $d_{j j}$.

