Advanced Differential Equations

Chapter 3. Existence Theory

Section 3.2. Preliminaries—Proofs of Theorems

Table of contents

(1) Theorem 3.2.1
(2) Theorem 3.2.2
(3) Lemma 3.2.3

Theorem 3.2.1

Theorem 3.2.1. Let $f(t, y)$ be continuous. A function $\varphi(t)$ defined on interval l is a solution to the IVP

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y) \\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

on I if and only if φ is a continuous solution of the integral equation

$$
y=y_{0}+\int_{t_{0}}^{t} f(s, y) d s
$$

Proof. Let φ be a solution of the IVP and let $K(t)=f(t, \varphi(t))$. Then $K(t)$ is continuous and $\varphi^{\prime}(t)=K(t)$. So $\int_{t_{0}}^{t} \varphi^{\prime} d s=\int_{t_{0}}^{t} K(s) d s$ or $\varphi(t)-\varphi\left(t_{0}\right)=\int_{t_{0}}^{t} f(s, \varphi(s)) d s$ which implies
$\varphi(t)=y_{0}+\int_{t_{0}}^{t} f(s, \varphi(s)) d s$. So φ is a solution of the integral equation.

Theorem 3.2.1

Theorem 3.2.1. Let $f(t, y)$ be continuous. A function $\varphi(t)$ defined on interval $/$ is a solution to the IVP

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y) \\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

on I if and only if φ is a continuous solution of the integral equation

$$
y=y_{0}+\int_{t_{0}}^{t} f(s, y) d s
$$

Proof. Let φ be a solution of the IVP and let $K(t)=f(t, \varphi(t))$. Then $K(t)$ is continuous and $\varphi^{\prime}(t)=K(t)$. So $\int_{t_{0}}^{t} \varphi^{\prime} d s=\int_{t_{0}}^{t} K(s) d s$ or $\varphi(t)-\varphi\left(t_{0}\right)=\int_{t_{0}}^{t} f(s, \varphi(s)) d s$ which implies
$\varphi(t)=y_{0}+\int_{t_{0}}^{t} f(s, \varphi(s)) d s$. So φ is a solution of the integral equation.

Theorem 3.2.1 (continued)

Theorem 3.2.1. Let $f(t, y)$ be continuous. A function $\varphi(t)$ defined on interval $/$ is a solution to the IVP

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y) \\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

on I if and only if φ is a continuous solution of the integral equation

$$
y=y_{0}+\int_{t_{0}}^{t} f(s, y) d s
$$

Proof (continued). If φ is a solution of the integral equation then $\varphi(t)=y_{0}+\int_{t_{0}}^{t} f(s, \varphi(s)) d s$ and so $\varphi\left(t_{0}\right)=y_{0}$. Also since f and φ are continuous, then $f(t, \varphi(t))$ is continuous and so by the Fundamental Theorem of Calculus, $\varphi^{\prime}(t)=f(t, \varphi(t))$. So φ is a solution to the IVP.

Theorem 3.2.2

Theorem 3.2.2. The space $C([a, b])$ is complete.
Proof. Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $C([a, b])$. For a given $t,\left\{f_{n}(t)\right\}$ is a sequence of real numbers and since

$$
\left|f_{n}(t)=f_{m}(t)\right| \leq \max _{t \in[a, b]}\left|f_{n}(t)=f_{m}(t)\right|=\rho\left(f_{n}, f_{m}\right)
$$

$\left\{f_{n}(t)\right\}$ is a Cauchy sequence of real numbers and so converges because \mathbb{R} is complete. Define the function $y(t)=\lim _{n \rightarrow \infty} f_{n}(t)$ for each $t \in[a, b]$.

Theorem 3.2.2

Theorem 3.2.2. The space $C([a, b])$ is complete.
Proof. Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $C([a, b])$. For a given $t,\left\{f_{n}(t)\right\}$ is a sequence of real numbers and since

$$
\left|f_{n}(t)=f_{m}(t)\right| \leq \max _{t \in[a, b]}\left|f_{n}(t)=f_{m}(t)\right|=\rho\left(f_{n}, f_{m}\right),
$$

$\left\{f_{n}(t)\right\}$ is a Cauchy sequence of real numbers and so converges because \mathbb{R} is complete. Define the function $y(t)=\lim _{n \rightarrow \infty} f_{n}(t)$ for each $t \in[a, b]$.

Let $\varepsilon>0$ and let $N \in \mathbb{N}$ be such that $\rho\left(f_{n}, f_{m}\right)<\varepsilon$ for all $m, n>N$. Then for any $t \in[a, b], \mid f_{n}(t)-f_{m}(t) \leq \rho\left(f_{n}, f_{m}\right)<\varepsilon$ for all $m, n>N$. Therefore $\lim _{m \rightarrow \infty}\left|f_{n}(t)-f_{m}(t)\right|<\varepsilon$ or

$$
\begin{equation*}
\left|f_{n}(t)-y(t)\right|<\varepsilon \text { for all } n>N \text { and for all } t \in[a, b] . \tag{*}
\end{equation*}
$$

If $y \in C([a, b])$, then this implies $\rho\left(f_{n}, y\right)<\varepsilon$ and we get that f_{n} converges

Theorem 3.2.2

Theorem 3.2.2. The space $C([a, b])$ is complete.
Proof. Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $C([a, b])$. For a given $t,\left\{f_{n}(t)\right\}$ is a sequence of real numbers and since

$$
\left|f_{n}(t)=f_{m}(t)\right| \leq \max _{t \in[a, b]}\left|f_{n}(t)=f_{m}(t)\right|=\rho\left(f_{n}, f_{m}\right)
$$

$\left\{f_{n}(t)\right\}$ is a Cauchy sequence of real numbers and so converges because \mathbb{R} is complete. Define the function $y(t)=\lim _{n \rightarrow \infty} f_{n}(t)$ for each $t \in[a, b]$.

Let $\varepsilon>0$ and let $N \in \mathbb{N}$ be such that $\rho\left(f_{n}, f_{m}\right)<\varepsilon$ for all $m, n>N$. Then for any $t \in[a, b], \mid f_{n}(t)-f_{m}(t) \leq \rho\left(f_{n}, f_{m}\right)<\varepsilon$ for all $m, n>N$.
Therefore $\lim _{m \rightarrow \infty}\left|f_{n}(t)-f_{m}(t)\right|<\varepsilon$ or

$$
\begin{equation*}
\left|f_{n}(t)-y(t)\right|<\varepsilon \text { for all } n>N \text { and for all } t \in[a, b] . \tag{*}
\end{equation*}
$$

If $y \in C([a, b])$, then this implies $\rho\left(f_{n}, y\right)<\varepsilon$ and we get that f_{n} converges to y.

Theorem 3.2.2 (continued)

Proof (continued). We now show $y \in C([a, b])$ (i.e., y is continuous). Let $\varepsilon>0$ and $t_{0} \in[a, b]$ be fixed. As above, there exists $N \in \mathbb{N}$ such that $\left|f_{n}(t)-y(t)\right|<\varepsilon / 3$ for all $n>N$ and for all $y \in[a, b]$ by $(*)$. Fix $n>N$. Since $f_{n}(x)$ is continuous, there exists $\delta>0$ such that if $\left|t-t_{0}\right|<\delta$ then $\left|f_{n}(t)-f_{n}\left(t_{0}\right)\right|<\varepsilon / 3$.

$$
\left|y(t)-y\left(t_{0}\right)\right| \leq\left|y(t)-f_{n}(t)\right|+\left|f_{n}(t)-f_{n}\left(t_{0}\right)\right|+\left|f_{n}\left(t_{0}\right)-y\left(t_{0}\right)\right|
$$

and if $\left|t-t_{0}\right|<\delta$ then

$$
\left|y(t)-y\left(t_{0}\right)\right|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
$$

So $y(t)$ is continuous at t_{0} and $y \in C([a, b])$.

Theorem 3.2.2 (continued)

Proof (continued). We now show $y \in C([a, b])$ (i.e., y is continuous). Let $\varepsilon>0$ and $t_{0} \in[a, b]$ be fixed. As above, there exists $N \in \mathbb{N}$ such that $\left|f_{n}(t)-y(t)\right|<\varepsilon / 3$ for all $n>N$ and for all $y \in[a, b]$ by $(*)$. Fix $n>N$. Since $f_{n}(x)$ is continuous, there exists $\delta>0$ such that if $\left|t-t_{0}\right|<\delta$ then $\left|f_{n}(t)-f_{n}\left(t_{0}\right)\right|<\varepsilon / 3$. So

$$
\left|y(t)-y\left(t_{0}\right)\right| \leq\left|y(t)-f_{n}(t)\right|+\left|f_{n}(t)-f_{n}\left(t_{0}\right)\right|+\left|f_{n}\left(t_{0}\right)-y\left(t_{0}\right)\right|
$$

and if $\left|t-t_{0}\right|<\delta$ then

$$
\left|y(t)-y\left(t_{0}\right)\right|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
$$

So $y(t)$ is continuous at t_{0} and $y \in C([a, b])$.

Lemma 3.2.3

Lemma 3.2.3. The space B is complete.
Proof. Let $\left\{f_{n}\right\}$ be a Cauchy sequence in B. As in Theorem 3.2.2, f_{n} converges to $y \in C([a, b])$.

Lemma 3.2.3

Lemma 3.2.3. The space B is complete.
Proof. Let $\left\{f_{n}\right\}$ be a Cauchy sequence in B. As in Theorem 3.2.2, f_{n} converges to $y \in C([a, b])$.

Let $\varepsilon>0$. Then there exists $N \in \mathbb{N}$ such that if $n \geq N$ then $\rho\left(f_{n}, y\right)<\varepsilon$. So

$$
\rho\left(y, f_{0}\right) \leq \rho\left(y, f_{n}\right)+\rho\left(f_{n}, f_{0}\right)<\varepsilon+\alpha .
$$

Therefore $\rho\left(y, f_{0}\right) \leq \alpha$ and $y \in B$.

Lemma 3.2.3

Lemma 3.2.3. The space B is complete.
Proof. Let $\left\{f_{n}\right\}$ be a Cauchy sequence in B. As in Theorem 3.2.2, f_{n} converges to $y \in C([a, b])$.

Let $\varepsilon>0$. Then there exists $N \in \mathbb{N}$ such that if $n \geq N$ then $\rho\left(f_{n}, y\right)<\varepsilon$. So

$$
\rho\left(y, f_{0}\right) \leq \rho\left(y, f_{n}\right)+\rho\left(f_{n}, f_{0}\right)<\varepsilon+\alpha .
$$

Therefore $\rho\left(y, f_{0}\right) \leq \alpha$ and $y \in B$.

