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Chapter 3. Existence Theory
Section 3.2. Preliminaries—Proofs of Theorems
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Theorem 3.2.1

Theorem 3.2.1

Theorem 3.2.1. Let f (t, y) be continuous. A function ϕ(t) defined on
interval I is a solution to the IVP{

y ′ = f (t, y)
y(t0) = y0

on I if and only if ϕ is a continuous solution of the integral equation

y = y0 +

∫ t

t0

f (s, y) ds.

Proof. Let ϕ be a solution of the IVP and let K (t) = f (t, ϕ(t)). Then
K (t) is continuous and ϕ′(t) = K (t). So

∫ t
t0

ϕ′ ds =
∫ t
t0

K (s) ds or

ϕ(t)− ϕ(t0) =
∫ t
t0

f (s, ϕ(s)) ds which implies

ϕ(t) = y0 +
∫ t
t0

f (s, ϕ(s)) ds. So ϕ is a solution of the integral equation.
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Theorem 3.2.1

Theorem 3.2.1 (continued)

Theorem 3.2.1. Let f (t, y) be continuous. A function ϕ(t) defined on
interval I is a solution to the IVP{

y ′ = f (t, y)
y(t0) = y0

on I if and only if ϕ is a continuous solution of the integral equation

y = y0 +

∫ t

t0

f (s, y) ds.

Proof (continued). If ϕ is a solution of the integral equation then
ϕ(t) = y0 +

∫ t
t0

f (s, ϕ(s)) ds and so ϕ(t0) = y0. Also since f and ϕ are
continuous, then f (t, ϕ(t)) is continuous and so by the Fundamental
Theorem of Calculus, ϕ′(t) = f (t, ϕ(t)). So ϕ is a solution to the IVP.
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Theorem 3.2.2

Theorem 3.2.2

Theorem 3.2.2. The space C ([a, b]) is complete.

Proof. Let {fn} be a Cauchy sequence in C ([a, b]). For a given t, {fn(t)}
is a sequence of real numbers and since

|fn(t) = fm(t)| ≤ max
t∈[a,b]

|fn(t) = fm(t)| = ρ(fn, fm),

{fn(t)} is a Cauchy sequence of real numbers and so converges because R
is complete. Define the function y(t) = limn→∞ fn(t) for each t ∈ [a, b].

Let ε > 0 and let N ∈ N be such that ρ(fn, fm) < ε for all m, n > N. Then
for any t ∈ [a, b], |fn(t)− fm(t) ≤ ρ(fn, fm) < ε for all m, n > N.
Therefore limm→∞ |fn(t)− fm(t)| < ε or

|fn(t)− y(t)| < ε for all n > N and for all t ∈ [a, b]. (∗)

If y ∈ C ([a, b]), then this implies ρ(fn, y) < ε and we get that fn converges
to y .
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Theorem 3.2.2

Theorem 3.2.2 (continued)

Proof (continued). We now show y ∈ C ([a, b]) (i.e., y is continuous).
Let ε > 0 and t0 ∈ [a, b] be fixed. As above, there exists N ∈ N such that
|fn(t)− y(t)| < ε/3 for all n > N and for all y ∈ [a, b] by (∗). Fix n > N.
Since fn(x) is continuous, there exists δ > 0 such that if |t − t0| < δ then
|fn(t)− fn(t0)| < ε/3. So

|y(t)− y(t0)| ≤ |y(t)− fn(t)|+ |fn(t)− fn(t0)|+ |fn(t0)− y(t0)|

and if |t − t0| < δ then

|y(t)− y(t0)| <
ε

3
+

ε

3
+

ε

3
= ε.

So y(t) is continuous at t0 and y ∈ C ([a, b]).
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Lemma 3.2.3

Lemma 3.2.3

Lemma 3.2.3. The space B is complete.

Proof. Let {fn} be a Cauchy sequence in B. As in Theorem 3.2.2, fn
converges to y ∈ C ([a, b]).

Let ε > 0. Then there exists N ∈ N such that if n ≥ N then ρ(fn, y) < ε.
So

ρ(y , f0) ≤ ρ(y , fn) + ρ(fn, f0) < ε + α.

Therefore ρ(y , f0) ≤ α and y ∈ B.
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