Chapter 3. Existence Theory
Section 3.3. The Contraction Mapping Theorem—Proofs of Theorems
1 Theorem 3.3.1. The Contraction Mapping Theorem
Theorem 3.3.1. The Contraction Mapping Theorem.
A contraction mapping T defined on a complete metric space has a unique fixed point.

Proof. Let $y_0 \in M$ and define $y_n = Ty_{n-1}$ for $n \in \mathbb{N}$. Then

$$\rho(y_{m+1}, y_m) = \rho(Ty_m, Ty_{m-1}) \leq \alpha \rho(y_m, y_{m-1}) \leq \cdots \leq \alpha^m \rho(y_1, y_0).$$

Then for $k \in \mathbb{N}$ we have

$$\rho(y_{n+k}, y_n) \leq \rho(y_{n+k}, y_{n+k-1}) + \cdots + \rho(y_{n+1}, y_n)$$
$$\leq \alpha^{n+k-1} \rho(y_1, y_0) + \cdots + \alpha^n \rho(y_1, y_0)$$
$$= \alpha^n (\alpha^{k-1} + \alpha^{k-2} + \cdots + \alpha + 1) \rho(y_1, y_0).$$
Theorem 3.3.1. The Contraction Mapping Theorem

A contraction mapping T defined on a complete metric space has a unique fixed point.

Proof. Let $y_0 \in M$ and define $y_n = Ty_{n-1}$ for $n \in \mathbb{N}$. Then

$$
\rho(y_{m+1}, y_m) = \rho(Ty_m, Ty_{m-1}) \leq \alpha \rho(y_m, y_{m-1}) \leq \cdots \leq \alpha^m \rho(y_1, y_0).
$$

Then for $k \in \mathbb{N}$ we have

$$
\rho(y_{n+k}, y_n) \leq \rho(y_{n+k}, y_{n+k-1}) + \cdots + \rho(y_{n+1}, y_n)
\leq \alpha^{n+k-1} \rho(y_1, y_0) + \cdots + \alpha^n \rho(y_1, y_0)
= \alpha^n (\alpha^{k-1} + \alpha^{k-2} + \cdots + \alpha + 1) \rho(y_1, y_0).
$$

Since for $\alpha \in (0, 1)$, $\sum_{n=1}^{\infty} \alpha^n = 1/(1 - \alpha)$, and therefore

$$
\sum_{i=0}^{k-1} \alpha^i < 1/(1 - \alpha).
$$

So

$$
\rho(y_{n+k}, y_n) \leq \frac{\alpha^n}{1 - \alpha} \rho(y_1, y_0).
$$
Theorem 3.3.1. The Contraction Mapping Theorem

Theorem 3.3.1. The Contraction Mapping Theorem.
A contraction mapping \(T \) defined on a complete metric space has a unique fixed point.

Proof. Let \(y_0 \in M \) and define \(y_n = Ty_{n-1} \) for \(n \in \mathbb{N} \). Then

\[
\rho(y_{m+1}, y_m) = \rho(Ty_m, Ty_{m-1}) \leq \alpha \rho(y_m, y_{m-1}) \leq \cdots \leq \alpha^m \rho(y_1, y_0).
\]

Then for \(k \in \mathbb{N} \) we have

\[
\rho(y_{n+k}, y_n) \leq \rho(y_{n+k}, y_{n+k-1}) + \cdots + \rho(y_{n+1}, y_n) \\
\leq \alpha^{n+k-1} \rho(y_1, y_0) + \cdots + \alpha^n \rho(y_1, y_0) \\
= \alpha^n (\alpha^{k-1} + \alpha^{k-2} + \cdots + \alpha + 1) \rho(y_1, y_0).
\]

Since for \(\alpha \in (0, 1) \), \(\sum_{n=1}^{\infty} \alpha^n = 1/(1 - \alpha) \), and therefore \(\sum_{i=0}^{k-1} \alpha^i < 1/(1 - \alpha) \). So

\[
\rho(y_{n+k}, y_n) \leq \frac{\alpha^n}{1 - \alpha} \rho(y_1, y_0).
\]
Theorem 3.3.1 (continued)

Theorem 3.3.1. The Contraction Mapping Theorem.
A contraction mapping T defined on a complete metric space has a unique fixed point.

Proof. Since $\alpha \in (0, 1)$, $\frac{\alpha^n}{1 - \alpha} \rho(y_1, y_0) \rightarrow 0$ as $n \rightarrow \infty$, then $\{y_n\}$ is Cauchy. Since M is complete, $\{y_n\}$ converges to, say, y. Not T is continuous (take $\delta = \varepsilon$ in the definition of continuity) and so

$$Ty = T \left(\lim_{n \rightarrow \infty} y_n \right) = \lim_{n \rightarrow \infty} Ty_n = \lim_{n \rightarrow \infty} y_{n+1} = y.$$

So y is a fixed point.

Now suppose $x = Tx$ and $y = Ty$. Then, since $\alpha \in (0, 1)$,

$$\rho(x, y) = \rho(Tx, Ty) \leq \alpha \rho(x, y) \text{ implies } \rho(x, y) = 0.$$

So fixed points are unique.
Theorem 3.3.1. The Contraction Mapping Theorem.
A contraction mapping T defined on a complete metric space has a unique fixed point.

Proof. Since $\alpha \in (0, 1)$, $\frac{\alpha^n}{1 - \alpha} \rho(y_1, y_0) \to 0$ as $n \to \infty$, then $\{y_n\}$ is Cauchy. Since M is complete, $\{y_n\}$ converges to, say, y. Not T is continuous (take $\delta = \epsilon$ in the definition of continuity) and so

$$Ty = T \left(\lim_{n \to \infty} y_n \right) = \lim_{n \to \infty} Ty_n = \lim_{n \to \infty} y_{n+1} = y.$$

So y is a fixed point.

Now suppose $x = Tx$ and $y = Ty$. Then, since $\alpha \in (0, 1)$,

$$\rho(x, y) = \rho(Tx, Ty) \leq \alpha \rho(x, y)$$ implies $\rho(x, y) = 0$.

So fixed points are unique.