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Theorem 3.4.1

Theorem 3.4.1. Let f(x, t) be continuous and Lipschitz with Lipschitz
constant K on Q = {(t,y) | [t — to| < a,|y — yo| < b} and let M be a
number such that |f(t,y)| < M for all (x,y) € Q. Choose

0 < a<min{l/K,b/M,a}. Then there exists a unique solution of

y'=f(t,y)
y(to) = yo
for |t — to| < .
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Theorem 3.4.1

Theorem 3.4.1. Let f(x, t) be continuous and Lipschitz with Lipschitz
constant K on Q = {(t,y) | [t — to| < a,|y — yo| < b} and let M be a
number such that |f(t,y)| < M for all (x,y) € Q. Choose

0 < a<min{l/K,b/M,a}. Then there exists a unique solution of

y'=f(t,y)
y(to) = yo
for |t — to| < .

Proof. Let f,€, ty,a, b and « be as hypothesized. Let

B={¢|pe C([to — a,to+ a]), p(¢, y0) < b}. Then B is complete by
Lemma 3.2.3. Define

TMM=W+LV@¢m$.

Now
< M|t —ty]| < Ma < b.

(To)() - yol < / 1#(s. (s))] ds
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Theorem 3.4.1 (continued)

Proof (continued). Since |(t¢)(t) — yo| is continuous, it attains its
maximum on [ty — «, to + & (by the Extreme Value Theorem) and this

max is < b. So p(T, yp) < b and for each ¢ € B we have Ty € B. That
is, T:B— B.
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Theorem 3.4.1 (continued)

Proof (continued). Since |(t¢)(t) — yo| is continuous, it attains its
maximum on [ty — «, to + & (by the Extreme Value Theorem) and this
max is < b. So p(T, yp) < b and for each ¢ € B we have Ty € B. That
is, T:B— B.

Now

((Te = TY)(t)] =

yo+/ttf<s ols ))dS—YO—/t F(s,16(s)) ds

/|fsw ) — f(s,%(s))| ds /|<p s)| ds

< Kp(e, ¥) / ds| = Kp(e,¥)[t — to| < Kap(p, ¥).
So |(Ty — TY)(t)] < Kap(p, 1) and therefore

p(Te, TY) < Kap(e, ¥) < p(e, ¥).
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Theorem 3.4.1 (continued)

Theorem 3.4.1. Let f(x, t) be continuous and Lipschitz with Lipschitz
constant K on Q = {(t,y) | [t — to| < a,|y — yo| < b} and let M be a
number such that |f(t,y)| < M for all (x,y) € Q. Choose

0 < a<min{l/K,b/M,a}. Then there exists a unique solution of

y/ = f(tvy)
y(to) = yo

for |t — to| < a.

Proof. So T is a contraction on B and therefore T has a unique fixed

point by Theorem 3.3.1. This fixed point ¢ is a solution to the integral
equation

t
y=yo+ / f(s,1(s)) ds.
to
By Theorem 3.2.1, this fixed point is also the unique solution to the
IVP. Ol
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Theorem 3.4.2

Theorem 3.4.2. Let f(t,y) be continuous and Lipschitz with Lipschitz
constant K valid for every t and y (i.e., f is “uniformly Lipschitz"). Then
for any tp, yo € R, there is a solution to

y' =f(t,y)

y(to) = yo

and this solution is valid for all t.
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Theorem 3.4.2

Theorem 3.4.2. Let f(t,y) be continuous and Lipschitz with Lipschitz
constant K valid for every t and y (i.e., f is “uniformly Lipschitz"). Then
for any tp, yo € R, there is a solution to

y'=f(t,y)
y(to) = yo

and this solution is valid for all t.

Proof. Let t; € R and assume t; > tg. Let M = C([to, t1]). For
f,g € M, define
p(f.g) = max e (1) — g(1)].

te(to, t1]

Then p is a metric on M. We restrict L > K. Define

t
(W0 =+ [ flsy(s)ds
to
Then T: M — M.
Advanced Differential Equations April 17, 2019 6 /12



Theorem 3.4.2 (continued 1)

Proof (continued). If g, h € M then

(Tg)(t) — (Th)(2)| = /t(f(s,g(S))— f(s, h(s))) ds

< | [ 1#(e.80) = (s (e 05 < K| [ le(e) - i) e

—K/ lg(s) — h(s)| ds,

<K
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Theorem 3.4.2 (continued 1)

Proof (continued). If g, h € M then

(Tg)(t) — (Th)(2)| = /t(f(s,g(S))— f(s, h(s))) ds

< | [ 1#(e.80) = (s (e 05 < K| [ le(e) - i) e
—K/ lg(s) — h(s)| ds,
or, with « = K/L < 1,

o 0| (Tg)(1)~(TH(0)] < Ke 6 [ et 0)etle- ] g(5)h(s) ds

to

<K

< Kp(g, h)e*L(t*to) /f el(s—t0) 4o — %p(g, h)efL(tfto)(eL(tfto) ~1)
£

K (e K
= r(g h)(1—e ™) < p(g, h) = ap(g, h).
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Theorem 3.4.2 (continued 2)

Theorem 3.4.2. Let f(t,y) be continuous and Lipschitz with Lipschitz
constant K valid for every t and y (i.e., f is “uniformly Lipschitz"). Then
for any tp, yo € R, there is a solution to

y'=1(t,y)
y(to) = yo
and this solution is valid for all t.

Proof (continued). So p(Tg, Th) < ap(g, h) and T is a contraction. As
in Theorem 3.4.1, this produces a unique fixed solution of the IVP valid on
[to, t1]. Since t; was arbitrary, the solution is valid for t € [tp, 00).

Similarly, if t; < to we get the solution valid for all t. O
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Lemma 3.4.4. Gronwall's Inequality

Lemma 3.4.4. Gronwall's Inequality

Lemma 3.4.4. Gronwall’s Inequality.
Let ¢(t) be a nonnegative function where

t

o(t) < C+K/ o(s)ds, t> 1o

to

where C and K are constants, K > 0 and C > 0. Then ¢(t) < CeK(t—t)
for t > ty.
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Lemma 3.4.4. Gronwall's Inequality

Lemma 3.4.4. Gronwall's Inequality

Lemma 3.4.4. Gronwall’s Inequality.
Let ¢(t) be a nonnegative function where

t
ﬂﬂ§C+K/¢@Mat>m
to

where C and K are constants, K > 0 and C > 0. Then ¢(t) < CeK(t—t)
for t > ty.

Kop(t
Proof. Under the stated hypotheses, <,0t( ) < K and so
C+K [, ¢(s)ds

u=t K u=t
/ olu) < / K du
u=t, C+ Kfto ©(s) ds u

=tg
or In (C+ K/ ©(s) ds)
to
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Lemma 3.4.4 (continued)

Proof (continued).

or In <C+/tcp(s)ds> —InC < K(t - to)

to

t
o C+ Kfto ©(s)ds - eKlt—t)

C

t
or C+ K/ o(s) ds < CeK(t=t0)

to

and so by the hypotheses,

t
o(t) < C+ K/ o(s) ds < CeK(t=t0),
to
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Conditions

Theorem 3.4.5. Continuous Dependence of IVPs on Initial
Conditions

Theorem 3.4.5. Continuous Dependence of IVPs on Initial
Conditions.
Define T : R — C([a, b]) be defined as Tyy = ¢ where ¢ is the solution of
y'=f(t,y)
y(to) = yo

for given Lipschitz f with Lipschitz constant K valid for every t and y.
Then T is continuous.
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Conditions

Theorem 3.4.5. Continuous Dependence of IVPs on Initial
Conditions

Theorem 3.4.5. Continuous Dependence of IVPs on Initial
Conditions.

Define T : R — C([a, b]) be defined as Tyy = ¢ where ¢ is the solution of
y'=1(t,y)
y(to) = o

for given Lipschitz f with Lipschitz constant K valid for every t and y.
Then T is continuous.

Proof. Let € > 0 and choose § < e/eK(b*a). By Theorem 3.2.1, Tyg = ¢
is equivalent to

o(t) = yo + /tt f(s,¢(s)) ds.

Let yo,y1 € R where |yp — y1| < 0. Then if Ty; = 1, we have. ..
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Conditions

Theorem 3.4.5 (continued)
Proof (continued).

[ Tvo — Tyl = [e(t) — 4(2)]

~|(oo+ [ fsptns) = (n+ [ evieas)|

0oyt [ (75 p() ~ Flo,0(5)) o

to

<I|yo+yi|+

/ (5. 0(5)) — Fls.(s))] ds

<lvo-nl+K

(%)

/ lo(s) — (s)] ds

since K is the Lipschitz constant for f.
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Conditions

Theorem 3.4.5 (continued)
Proof (continued).

[ Tvo — Tyl = [e(t) — 4(2)]

~|(oo+ [ fsptns) = (n+ [ evieas)|

0oyt [ (75 p() ~ Flo,0(5)) o

to

/ (5. 0(5)) — Fls.(s))] ds

<I|yo+yi|+

<lvo-nl+K

/ lels) —w(s) ds|  (+)

since K is the Lipschitz constant for f. By Lemma 3.4.4, we see that (x)

implies | Tyo — Ty1| < |yo — ya|ef10=t < |yo — y1|eX(P~2) < ¢ for all

t € [a, b]. So p(Tyo, Ty1) < € and T is continuous. O
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