
Advanced Differential Equations

April 17, 2019

Chapter 3. Existence Theory
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Theorem 3.4.1

Theorem 3.4.1

Theorem 3.4.1. Let f (x , t) be continuous and Lipschitz with Lipschitz
constant K on Ω = {(t, y) | |t − t0| ≤ a, |y − y0| ≤ b} and let M be a
number such that |f (t, y)| ≤ M for all (x , y) ∈ Ω. Choose
0 < α < min{1/K , b/M, a}. Then there exists a unique solution of

y ′ = f (t, y)
y(t0) = y0

for |t − t0| ≤ α.

Proof. Let f ,Ω, t0, a, b and α be as hypothesized. Let
B = {ϕ | ϕ ∈ C ([t0 − α, t0 + α]), ρ(ϕ, y0) ≤ b}. Then B is complete by
Lemma 3.2.3. Define

T [ϕ](t) = y0 +

∫ t

t0

f (s, ϕ(s)) ds.

Now
|(Tϕ)(t)− y0| ≤

∣∣∣∣∫ t

t0

|f (s, ϕ(s))| ds

∣∣∣∣ ≤ M|t − t0| ≤ Mα < b.
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Theorem 3.4.1

Theorem 3.4.1 (continued)

Proof (continued). Since |(tϕ)(t)− y0| is continuous, it attains its
maximum on [t0 − α, t0 + α] (by the Extreme Value Theorem) and this
max is ≤ b. So ρ(Tϕ, y0) ≤ b and for each ϕ ∈ B we have Tϕ ∈ B. That
is, T : B → B.

Now

|(Tϕ− Tψ)(t)| =
∣∣∣∣y0 +

∫ t

t0

f (s, ϕ(s)) ds − y0 −
∫ t

t0

f (s, ψ(s)) ds

∣∣∣∣
≤

∣∣∣∣∫ t

t0

|f (s, $(s))− f (s, ψ(s))| ds

∣∣∣∣ ≤ K

∣∣∣∣∫ t

t0

|ϕ(s)− ψ(s)| ds

∣∣∣∣
≤ Kρ(ϕ,ψ)

∣∣∣∣∫ t

t0

ds

∣∣∣∣ = Kρ(ϕ,ψ)|t − t0| ≤ Kαρ(ϕ,ψ).

So |(Tϕ− Tψ)(t)| ≤ Kαρ(ϕ,ψ) and therefore

ρ(Tϕ,Tψ) ≤ Kαρ(ϕ,ψ) < ρ(ϕ,ψ).
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Proof (continued). Since |(tϕ)(t)− y0| is continuous, it attains its
maximum on [t0 − α, t0 + α] (by the Extreme Value Theorem) and this
max is ≤ b. So ρ(Tϕ, y0) ≤ b and for each ϕ ∈ B we have Tϕ ∈ B. That
is, T : B → B.

Now

|(Tϕ− Tψ)(t)| =
∣∣∣∣y0 +

∫ t

t0

f (s, ϕ(s)) ds − y0 −
∫ t

t0

f (s, ψ(s)) ds

∣∣∣∣
≤

∣∣∣∣∫ t

t0

|f (s, $(s))− f (s, ψ(s))| ds

∣∣∣∣ ≤ K

∣∣∣∣∫ t

t0

|ϕ(s)− ψ(s)| ds

∣∣∣∣
≤ Kρ(ϕ,ψ)

∣∣∣∣∫ t

t0

ds

∣∣∣∣ = Kρ(ϕ,ψ)|t − t0| ≤ Kαρ(ϕ,ψ).

So |(Tϕ− Tψ)(t)| ≤ Kαρ(ϕ,ψ) and therefore

ρ(Tϕ,Tψ) ≤ Kαρ(ϕ,ψ) < ρ(ϕ,ψ).

() Advanced Differential Equations April 17, 2019 4 / 12



Theorem 3.4.1

Theorem 3.4.1 (continued)

Theorem 3.4.1. Let f (x , t) be continuous and Lipschitz with Lipschitz
constant K on Ω = {(t, y) | |t − t0| ≤ a, |y − y0| ≤ b} and let M be a
number such that |f (t, y)| ≤ M for all (x , y) ∈ Ω. Choose
0 < α < min{1/K , b/M, a}. Then there exists a unique solution of

y ′ = f (t, y)
y(t0) = y0

for |t − t0| ≤ α.

Proof. So T is a contraction on B and therefore T has a unique fixed
point by Theorem 3.3.1. This fixed point ψ is a solution to the integral
equation

y = y0 +

∫ t

t0

f (s, ψ(s)) ds.

By Theorem 3.2.1, this fixed point is also the unique solution to the
IVP.
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Theorem 3.4.2

Theorem 3.4.2

Theorem 3.4.2. Let f (t, y) be continuous and Lipschitz with Lipschitz
constant K valid for every t and y (i.e., f is “uniformly Lipschitz”). Then
for any t0, y0 ∈ R, there is a solution to

y ′ = f (t, y)
y(t0) = y0

and this solution is valid for all t.

Proof. Let t1 ∈ R and assume t1 > t0. Let M = C ([t0, t1]). For
f , g ∈ M, define

ρ(f , g) = max
t∈[t0,t1]

e−L(t−t0)|f (t)− g(t)|.

Then ρ is a metric on M. We restrict L > K . Define

(Ty)(t) = y0 +

∫ t

t0

f (s, y(s)) ds.

Then T : M → M.
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Theorem 3.4.2

Theorem 3.4.2 (continued 1)

Proof (continued). If g , h ∈ M then

|(Tg)(t)− (Th)(t)| =
∣∣∣∣∫ t

t0

(f (s, g(s))− f (s, h(s))) ds

∣∣∣∣
≤

∣∣∣∣∫ t

t0

|f (s, g(s))− f (s, h(s))| ds

∣∣∣∣ ≤ K

∣∣∣∣∫ t

t0

|g(s)− h(s)| ds

∣∣∣∣
= K

∫ t

t0

|g(s)− h(s)| ds,

or, with α = K/L < 1,

e−L(t−t0)|(Tg)(t)−(Th)(t)| ≤ Ke−L(t−t0)

∫ t

t0

e−L(s−t0)eL(s−t0)|g(s)−h(s)| ds

≤ Kρ(g , h)e−L(t−t0)

∫ t

t0

eL(s−t0) ds =
K

L
ρ(g , h)e−L(t−t0)(eL(t−t0) − 1)

=
K

L
ρ(g , h)(1− e−L(t−t0)) <

K

L
ρ(g , h) = αρ(g , h).
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Theorem 3.4.2

Theorem 3.4.2 (continued 2)

Theorem 3.4.2. Let f (t, y) be continuous and Lipschitz with Lipschitz
constant K valid for every t and y (i.e., f is “uniformly Lipschitz”). Then
for any t0, y0 ∈ R, there is a solution to

y ′ = f (t, y)
y(t0) = y0

and this solution is valid for all t.

Proof (continued). So ρ(Tg ,Th) ≤ αρ(g , h) and T is a contraction. As
in Theorem 3.4.1, this produces a unique fixed solution of the IVP valid on
[t0, t1]. Since t1 was arbitrary, the solution is valid for t ∈ [t0,∞).
Similarly, if t1 < t0 we get the solution valid for all t.
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Lemma 3.4.4. Gronwall’s Inequality

Lemma 3.4.4. Gronwall’s Inequality

Lemma 3.4.4. Gronwall’s Inequality.
Let ϕ(t) be a nonnegative function where

ϕ(t) ≤ C + K

∫ t

t0

ϕ(s) ds, t > t0

where C and K are constants, K ≥ 0 and C > 0. Then ϕ(t) ≤ CeK(t−t0)

for t > t0.

Proof. Under the stated hypotheses,
Kϕ(t)

C + K
∫ t
t0
ϕ(s) ds

≤ K and so

∫ u=t

u=t0

Kϕ(u)

C + K
∫ u
t0
ϕ(s) ds

du ≤
∫ u=t

u=t0

K du

or ln

(
C + K

∫ u

t0

ϕ(s) ds

)∣∣∣∣u=t

u=t0

≤ K (t − t0)
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Lemma 3.4.4. Gronwall’s Inequality

Lemma 3.4.4 (continued)

Proof (continued).

or ln

(
C +

∫ t

t0

ϕ(s) ds

)
= ln C ≤ K (t − t0)

or
C + K

∫ t
t0
ϕ(s) ds

C
≤ eK(t−t0)

or C + K

∫ t

t0

ϕ(s) ds ≤ CeK(t−t0)

and so by the hypotheses,

ϕ(t) ≤ C + K

∫ t

t0

ϕ(s) ds ≤ CeK(t−t0).
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Theorem 3.4.5. Continuous Dependence of IVPs on Initial
Conditions

Theorem 3.4.5. Continuous Dependence of IVPs on Initial
Conditions

Theorem 3.4.5. Continuous Dependence of IVPs on Initial
Conditions.
Define T : R → C ([a, b]) be defined as Ty0 = ϕ where ϕ is the solution of

y ′ = f (t, y)
y(t0) = y0

for given Lipschitz f with Lipschitz constant K valid for every t and y .
Then T is continuous.

Proof. Let ε > 0 and choose δ < ε/eK(b−a). By Theorem 3.2.1, Ty0 = ϕ
is equivalent to

ϕ(t) = y0 +

∫ t

t0

f (s, ϕ(s)) ds.

Let y0, y1 ∈ R where |y0 − y1| < δ. Then if Ty1 = ψ, we have. . .

() Advanced Differential Equations April 17, 2019 11 / 12



Theorem 3.4.5. Continuous Dependence of IVPs on Initial
Conditions

Theorem 3.4.5. Continuous Dependence of IVPs on Initial
Conditions

Theorem 3.4.5. Continuous Dependence of IVPs on Initial
Conditions.
Define T : R → C ([a, b]) be defined as Ty0 = ϕ where ϕ is the solution of

y ′ = f (t, y)
y(t0) = y0

for given Lipschitz f with Lipschitz constant K valid for every t and y .
Then T is continuous.

Proof. Let ε > 0 and choose δ < ε/eK(b−a). By Theorem 3.2.1, Ty0 = ϕ
is equivalent to

ϕ(t) = y0 +

∫ t

t0

f (s, ϕ(s)) ds.

Let y0, y1 ∈ R where |y0 − y1| < δ. Then if Ty1 = ψ, we have. . .

() Advanced Differential Equations April 17, 2019 11 / 12



Theorem 3.4.5. Continuous Dependence of IVPs on Initial
Conditions

Theorem 3.4.5 (continued)

Proof (continued).

|Ty0 − Ty1| = |ϕ(t)− ψ(t)|

=

∣∣∣∣(y0 +

∫ t

t0

f (s, ϕ(s)) ds

)
−

(
y1 +

∫ t

t0

f (s, ψ(s)) ds

)∣∣∣∣
=

∣∣∣∣y0 − y1 +

∫ t

t0

(f (s, ϕ(s))− f (s, ψ(s)) ds

∣∣∣∣
≤ |y0 + y1|+

∣∣∣∣∫ t

t0

|f (s, ϕ(s))− f (s, ψ(s))| ds

∣∣∣∣
≤ |y0 − y1|+ K

∣∣∣∣∫ t

t0

|ϕ(s)− ψ(s)| ds

∣∣∣∣ (∗)

since K is the Lipschitz constant for f . By Lemma 3.4.4, we see that (∗)
implies |Ty0 − Ty1| ≤ |y0 − y1|eK |t0−t| ≤ |y0 − y1|eK(b−a) < ε for all
t ∈ [a, b]. So ρ(Ty0,Ty1) < ε and T is continuous.
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Theorem 3.4.5 (continued)

Proof (continued).
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