Section 1.2. Some Elementary Matrix Algebra

Note. In this section we give a quick review of some properties of matrices.

Definition. An $m \times n$ matrix A is a set of mn numbers a_{ij} , $i \in \{1, 2, ..., m\}$, $j \in \{1, 2, ..., n\}$ which we denote as

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = [a_{ij}].$$

Definition. If A and B are both $m \times n$ matrices, define the sum $A + B = [a_{ij} + b_{ij}]$. If A and B are both $m \times n$, then A = B is $a_{ij} = b_{ij}$ for all i and j. If $\lambda \in \mathbb{R}$, then scalar Multiplication of A by λ is $\lambda A = [\lambda a_{ij}]$. The zero matrix is the matrix of all zeros (of whatever given size), denoted 0.

Note. Some properties of matrix addition are as follows. For A, B, C and $0 \ m \times n$ matrices we have:

A + B = B + A
 A + (B + C) = (A + B) + C
 A - A = 0
 A + 0 = 0 + A = A

Note. The collection of all $m \times n$ matrices forms an abelian group under addition.

Definition. If A is an $m \times p$ matrix and B is a $p \times n$ matrix, define the *product*

$$AB = [c_{ij}] = \left[\sum_{k=1}^{p} a_{ik}b_{kj}\right]$$

for $i \in \{1, 2, \dots, m\}$ and $j \in \{1, 2, \dots, n\}$.

Note. Matrix multiplication is not necessarily commutative.

Definition. Let $A = [a_{ij}]$ be an $m \times n$ matrix. The $n \times m$ matrix $B = [b_{ij}]$ where $b_{ij} = a_{ji}$ is the *transpose* of A, denoted A^T .

Theorem 1.2.1. Let $\alpha \in \mathbb{R}$ and suppose the products below are defined. Then

- **1.** A(BC) = (AB)C
- **2.** $\alpha(AB) = (\alpha A)B = A(\alpha B)$
- **3.** (A+B)C = AC + BC
- **4.** C(A + B) = CA + CB
- **5.** $(AB)^T = B^T A^T$

Definition. An $m \times 1$ matrix is an *m*-dimensional (column) vector. The $p \times p$ matrix A such that

$$a_{ij} = \delta(i, j) = \begin{cases} 0 \text{ if } i \neq j \\ 1 \text{ if } i = j \end{cases}$$

is the *identity matrix*, denoted $\mathcal{I} = \mathcal{I}_p$.

Note. If A is $m \times n$ then $A = AI_n = I_m A$.

Definition. The determinant of a 1×1 matrix A is $det(A) = a_{11}$. The minor of an element a_{ij} of a matrix A is the matrix obtained by deleting the *i*th row and the *j*th column of A and is denoted M_{ij} . For A an $n \times n$ matrix, define the determinant of A recursively as:

> $A_{ij} = (-1)^{i+j} \det(M_{ij})$ (these are called *cofactors*) $\det(A) = a_{11}A_{11} + a_{21}A_{21} + \dots + a_{n1}A_{n1}.$

Theorem 1.2.2. For $n \times n$ matrix A,

$$\det(A) = \sum_{i=1}^{n} a_{ij} A_{ij} = \sum_{j=1}^{n} a_{ij} A_{ij}.$$

Note. Theorem 1.2.2 implies that determinants can be calculated by expanding about any row or column.

Theorem 1.2.3. If A and B are $n \times n$ then

$$\det(AB) = \det(A)\det(B).$$

Definition. A square matrix is singular if det(A) = 0 and nonsingular if $det(A) \neq 0$.

Definition. A matrix B is the *inverse* of square matrix A if $AB = \mathcal{I}$. We usually denote B as A^{-1} .

Theorem 1.2.4(a). If A^{-1} exists then $det(A) \neq 0$.

Theorem 1.2.4(b). If $det(A) \neq 0$ then A^{-1} exists.

Note. The text constructs A^{-1} as

$$A^{-1} = \frac{1}{\det(A)} [A_{ij}]^T.$$

Example. For
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, we have $\det(A) = ad - bc$ and
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Note. On page 9 of the text it is shown that A^{-1} is unique and $AA^{-1} = A^{-1}A$.

Theorem 1.2.5. The system

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = c_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = c_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = c_n$$

has a unique solution if and only if $A = [a_{ij}]$ is nonsingular.

Note. As a matrix equation, the system can be written $A\vec{x} = \vec{c}$ and if A is nonsingular then $\vec{x} = A^{-1}\vec{c}$.

Definition. A set of k n-dimensional vectors $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ is *linearly dependent* if there exists constants c_1, c_2, \ldots, c_k , not all zero, such that

$$c_1 \vec{x} - 1 + c_2 \vec{x}_2 + \dots + c_k \vec{x}_k = \vec{0}.$$

A set of vectors which are not linearly dependent is *linearly independent*.

Theorem 1.2.6. A matrix is nonsingular if and only if its columns are linearly independent.

Note. We can also consider a matrix of functions $A(t) = [a_{ij}(t)]$.

Definition. A(t) is

- **1.** continuous at t_0 if each $a_{ij}(t)$ is continuous at t_0 ,
- **2.** differentiable at t_0 if each $a_{ij}(t)$ is differentiable at t_0 , and
- **3.** integrable over [a, b] is each $a_{ij}(t)$ is integrable over [a, b].

Revised: 4/7/2019