Section 1.3. The Structure of Solutions of Homogeneous Linear Systems

Note. In this section we introduce matrix notation to deal with systems of linear equations.

Note. The system of n linear first order DEs

$$y'_{1} = a_{11}(t)y_{1} + a_{12}(t)y_{2} + \dots + a_{1n}(t)y_{n} + e_{1}(t)$$

$$y'_{2} = a_{21}(t)y_{1} + a_{22}(t)y_{2} + \dots + a_{2n}(t)y_{n} + e_{2}(t)$$

$$\vdots$$

$$y'_{n} = a_{n1}(t)y_{1} + a_{n2}(t)y_{2} + \dots + a_{nn}(t)y_{n} + e_{n}(t)$$

can be written as $\vec{x}' = A(t)\vec{x} + \vec{e}(t)$.

Theorem 1.3.1. Let A(t) be a continuous $n \times n$ matrix defined on interval Iand let $\vec{e}(t)$ be a continuous *n*-dimensional vector defined on I. For every constant *n*-vector \vec{x}_0 and every $t_0 \in I$ there exists a unique differentiable vector $\varphi(t)$ defined on I such that $\vec{\varphi}'(t) = A(t)\vec{\varphi}(t) + \vec{e}(t)$ for all $t \in I$ and $\vec{\varphi}(t_0) = \vec{x}_0$.

Note/Definition. The condition " $\vec{\varphi}(t_0) = \vec{x}_0$ " is an example of an *initial value*. The DE in Theorem 1.3.1 along with the initial value form an *initial value problem* (or "IVP"). In the even that $\vec{e}(t) = \vec{0}$, then DE $\vec{\varphi}'(t) = A(t)\vec{\varphi}(t)$ is said to be homogeneous. **Note.** We shall see a generalization of Theorem 1.3.1 in Chapter 3 (see Theorem 3.5.1). Such a theorem is called an "existence and uniqueness" theorem.

Definition. Let \mathcal{A} and \mathcal{B} be sets of functions. A function $T : \mathcal{A} \to \mathcal{B}$ is an *operator*. A is the *domain* of T and $\{y \mid y = Tx \text{ for some } x \in \mathcal{A}\}$ is the *range* of T. If for all $x, y \in \mathcal{A}$ and for all $\alpha, \beta \in \mathbb{R}$,

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$$

then T is a linear operator.

Example. T = d/dx is a linear operator with domain of all differentiable functions (on \mathbb{R} , say).

Note. If A(t) = A is an $n \times n$ matrix of continuous functions, then the operator $L[\vec{x}] = \vec{x}' - A\vec{x}$ maps the set of *n*-vectors of continuously differentiable function into the set of *n*-vectors of continuous functions. Notice that if $\vec{\varphi}$ is a solution of $\vec{x}' = A\vec{x} + \vec{e}(t)$ then $L[\vec{\varphi}] = \vec{e}(t)$.

Theorem 1.3.2. If A(t) is an $n \times n$ matrix of continuous functions on an interval I, then $L[\vec{x}] = \vec{x}' - A\vec{x}$ is a linear operator.

Theorem 1.3.3. Let *L* and *A* be as in Theorem 1.3.2. If $\vec{x_1}$ and $\vec{x_2}$ are solutions of $\vec{x'} = A\vec{x}$, then any linear combination of $\vec{x_1}$ and $\vec{x_2}$ is also a solution.

Definition. Let *L* be as in Theorem 1.3.2. If $\vec{x}_i(t)$ for i = 1, 2, ..., n is a collection of *n* linearly independent solutions of $L[\vec{x}] = \vec{0}$ then the matrix Φ whose columns are \vec{x}_i , $\Phi = [\vec{x}_i]$, is the *fundamental matrix* for the DE $\vec{x}' - A\vec{x} = \vec{0}$.

Note. If \vec{c} is a constant vector, then $\Phi \vec{c}$ is a solution of $L[\vec{x}] = \vec{0}$:

$$L[\Phi\vec{c}] = \Phi'\vec{c} - A\Phi\vec{c} = (\Phi' - A\Phi)\vec{c} = 0\vec{c} = 0.$$

Theorem 1.3.4. Let *L* be as in Theorem 1.3.2. If Φ is the fundamental matrix for $L[\vec{x}] = \vec{0}$ on an interval *I* where A(t) is continuous, then every solution of $L[\vec{x}] = \vec{0}$ can be written as $\phi \vec{c}$ for some constant vector \vec{c} .

Note. All of the above is based on the existence of Φ .

Theorem 1.3.6. If A(t) is continuous, there exists a fundamental matrix for $L[\vec{x}] = \vec{0}$ where L is as in Theorem 1.3.2.

Note. We still don't know how to find Φ .

Revised: 4/14/2019