Section 1.4. Matrix Analysis and Matrix Exponentiation

Note. In this section we introduce a norm on square matrices and define exponentiation of square matrices.

Definition. If A is an $R \times R$ matrix, define the norm of A as $\|A\|=\sum_{i, j}\left|a_{i j}\right|$. If \vec{A} is a vector $\left(a_{1}, a_{2}, \ldots, a_{R}\right)^{T}$, define the norm as $\|\vec{A}\|=\sum_{i}\left|a_{i}\right|$.

Theorem 1.4.A. Let A be an $R \times R$ matrix. Then:

1. $\|A\| \geq 0$ for $A \neq 0$, and $\|0\|=0$.
2. $\|c A\|=|c|\|A\|$ for scalar c.
3. $\|A+B\| \leq\|A\|+\|B\|$.
4. $\|A B\| \leq\|A\|\|B\|$.
5. $\|A \vec{x}\| \leq\|A\|\|\vec{x}\|$ for \vec{x} an R-vector.

Definition. A sequence of $R \times R$ matrices, A_{n}, is Cauchy if for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $m, n>N$ we have $\left\|A_{n}-A_{m}\right\|<\varepsilon$.

Theorem 1.4.1. Every Cauchy sequence of matrices (with real entries) A_{n} has a limit.

Definition. Given a sequence of matrices A_{n}, define the nth partial sum $S_{n}=$ $A_{1}+A_{2}+\cdots+A_{n}$. If the sequence S_{n} has limit S, then the series $\sum_{i=1}^{\infty} A_{i}$ is said to converge to S. If the sequence S_{n} does not have a limit, the series $\sum_{i=1}^{\infty} A_{i}$ is said to diverge.

Note. Recall that for $x \in \mathbb{R}$ we have $s^{x}=\sum_{n=0}^{\infty} x^{n} / n!$.

Theorem 1.4.2. The series $I+\sum_{n=1}^{\infty} A^{n} . n!$ converges for all square matrices A.

Definition. For A an $R \times R$ matrix, define $e^{A}=\sum_{k=0}^{\infty} A^{k} / n!$ and for $t \in \mathbb{R}$ define $s^{A t}=\sum_{k=1}^{\infty} A^{k} t^{k} / k!$.

Note. Notice that $e^{A t}$ is continuous, differentiable, and integrable with respect to t. Of course

$$
\frac{d}{d t}\left[e^{A t}\right]=A e^{A t}=e^{A t} A
$$

Definition. $R \times R$ matrices A and B are similar if there exists a nonsingular matrix T such that $T^{-1} A T=B$.

Note. If $B=T^{-1} A T$ then $B^{n}=T^{-1} A^{n} T$ and $e^{B}=T^{-1} e^{A} T$.

Theorem 1.4.4. For any square matrix $M, \operatorname{det}\left(e^{M}\right) \neq 0$.

