Section 1.8. General Linear Systems

Note. In this section we find solutions to nonhomogeneous linear systems of equations.

Theorem 1.8.1. If $\vec{x}(t)$ is a solution of

$$
\begin{equation*}
\vec{y}^{\prime}-A \vec{y}=\vec{e}(t) \tag{8.2}
\end{equation*}
$$

$(\vec{e}(t)$ is called a forcing term), then any solution $\vec{\Psi}(t)$ of (8.2) can be written as

$$
\vec{\Psi}(t)=\Phi(t) \vec{c}+\vec{x}(t)
$$

where Φ is a fundamental matrix for

$$
\begin{equation*}
\vec{y}^{\prime}-A \vec{y}=\overrightarrow{0} \tag{8.3}
\end{equation*}
$$

and \vec{c} is a constant.

Theorem 1.8.2.

$$
\vec{x}(t)-\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(\tau) \vec{e}(\tau) d \tau
$$

is a solution of $\vec{y}^{\prime}=\vec{e}(t)$.

Note. Theorem 1.8.2 can be modified to give solutions of IVPs, as follows.

Theorem 1.8.3. Variation of Constants.

Let $\Phi(t)$ be a fundamental matrix for $\vec{x}^{\prime}=A(t) \vec{x}$. Then the solution of

$$
\left\{\begin{array}{l}
\vec{y}^{\prime}=A(t) \vec{y}+\vec{e}(t) \\
\vec{y}\left(t_{0}\right)=\vec{\eta}
\end{array}\right.
$$

is

$$
\vec{y}(t)=\Phi(t) \Phi^{-1}\left(t_{0}\right) \vec{\eta}+\int_{t_{0}}^{t} \Phi(t) \Phi^{-1}(s) \vec{e}(s) d s
$$

Example. Page 68 Number 1(a). Solve $\vec{x}^{\prime}=\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right] \vec{x}+\left[\begin{array}{l}0 \\ t\end{array}\right]$.
Partial Solution. We have $\operatorname{det}(A-\lambda \mathcal{I})=(1-\lambda)(2-\lambda)$ and so the eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=2$. We find that we have eigenvectors $\vec{c}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\vec{c}_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. So $\Phi(t)=\left[\begin{array}{cc}e^{t} & 2 e^{2 t} \\ 0 & e^{2 t}\end{array}\right]$ and $\Phi^{-1}(t)=e^{-3 t}\left[\begin{array}{cc}e^{2 t} & -2 e^{2 t} \\ 0 & e^{t}\end{array}\right]=\left[\begin{array}{cc}e^{-1} & -2 e^{-t} \\ 0 & e^{-2 t}\end{array}\right]$. So we have

$$
\vec{x}(t)=\Phi(t) \int_{0}^{t} \Phi^{-1}(\tau) \vec{e}(\tau) d \tau=\left[\begin{array}{cc}
e^{t} & 2 e^{2 t} \\
0 & e^{2 t}
\end{array}\right] \int_{0}^{t}\left[\begin{array}{cc}
e^{-\tau} & -2 e^{-\tau} \\
0 & e^{-2 \tau}
\end{array}\right]\left[\begin{array}{l}
0 \\
\tau
\end{array}\right] d \tau
$$

We can now find the general solution using Theorem 1.8.3.

