Section 2.2. Phase Plane

Note. In this section we define the phase plane and classify equilibrium points as stable or unstable.

Note. In the previous section we considered the IVP:

$$
\begin{align*}
& \left\{\begin{array}{l}
x^{\prime}=f(x, y) \\
y^{\prime}=g(x, y)
\end{array}\right. \tag{1.2}\\
& x\left(t_{0}\right)=\alpha, y\left(t_{0}\right)=\beta
\end{align*}
$$

where $I=d / d t$. Solutions to (1.2) (guaranteed to exist by Theorem 2.1.1) can be viewed as triples $\left(t, x(t), y(t)\right.$ in \mathbb{R}^{3} or as curves $(x(t), y(t))$ in \mathbb{R}^{2} which are given parametrically.

Definition. The phase plane associated with (1.2) is the (x, y) plane and the curve $(x(t), y(t))$ is a trajectory of (1.2) which passes through (α, β) when $t=0$.

Lemma 2.2.1. If $\left(\varphi_{1}(t), \varphi_{2}(t)\right)$ is a solution of (1.2), then so is $\left(\varphi_{1}(t-\tau), \varphi_{2}(t-\tau)\right)$ for any $\tau \in \mathbb{R}$.

Theorem 2.2.2. Let f and g be continuously differentiable. Through each point $\left(x_{0} y_{0}\right)$ there is a unique trajectory of $x^{\prime}=f(x, y)$
$\left(x_{0}, y_{0}\right)$ there is a unique trajectory of

$$
y^{\prime}=g(x, y)
$$

Note. The two dimensional system $x^{\prime}=f(x, y)$ is equivalent to (by the Chain

$$
y^{\prime}=g(x, y)
$$

Rule):

$$
\frac{d y}{d x}=\frac{d y}{d t} \frac{1}{d x / d t}=\frac{g(x, y)}{f(x, y)}
$$

Definition. A two dimensional system which can be written $x^{\prime}=f(x, y)$ (where

$$
y^{\prime}=g(x, y)
$$

$\prime=d / d t$) is an autonomous system (that is, the derivatives of x and y do not depend explicitly on t. In other words, the system changes according to the state it is in and is independent of "time").

Definition. For the system (1.2), $\left(x_{0}, y_{0}\right)$ is a critical point if $f\left(x_{0}, y_{0}\right)=g\left(x_{0}, y_{0}\right)=$ 0 . This is also called an equilibrium solution or a stationary solution.

Theorem 2.2.A. The only trajectory which passes through a critical point $\left(x_{0}, y_{0}\right)$ is the constant solution $x=x_{0}, y=y_{0}$.

Example. Page 107 Number 6d.

Definition. A critical point $\left(x_{0}, y_{0}\right)$ of (1.2) is stable if for all $\varepsilon>0$ there exists $\delta>0$ such that if $(x(t), y(t))$ is a solution of (1.2) and if $\left\|\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)-\left(x_{0}, y_{0}\right)\right\|<\delta$ then $\left\|(x(t), y(t))-\left(x_{0}, y_{0}\right)\right\|<\varepsilon$ for all $t \geq t_{0}$. A critical point that is not stable is unstable.

Definition. A stable critical point is asymptotically stable if there exists $\eta>0$ such that if $\|\left(x\left(t_{0}\right), y\left(t_{0}\right)-\left(x_{0}, y_{0}\right) \|<\eta\right.$ then $\lim _{t \rightarrow \infty}(x(t), y(t))=\left(x_{0}, y_{0}\right)$.

Note. If we represent $x^{\prime}=a x+b y$ in polar coordinates, then we find that $x=$

$$
y^{\prime}=c x+d y
$$

$r \cos \theta, y=r \sin \theta$ implies

$$
\begin{gathered}
r^{\prime}=r\left(a \cos ^{2} \theta+d \sin ^{2} \theta+(b+c) \sin \theta \cos \theta\right) \\
\theta^{\prime}=c \cos ^{2} \theta-b \sin ^{2} \theta+(d-a) \sin \theta \cos \theta
\end{gathered}
$$

Example. Page 106 Number 2.

Note. If we let

$$
\begin{aligned}
& \varphi_{1}(r)=r(t) \cos \theta(t) \text { be a solution of } x^{\prime}=a x+b y \text { then } \\
& \varphi_{2}(t)=r(t) \sin \theta(t) \quad y^{\prime}=c x+d y \\
& \varphi_{1}(t)=\operatorname{ar}(t) \cos \theta(t)+b r(t) \sin \theta(t) \\
& \varphi_{2}(t)=c r(t) \cos \theta(t)+d r(t) \sin \theta(t)
\end{aligned}
$$

or

$$
\begin{aligned}
r^{\prime}(t) & =r\left(a \cos ^{2} \theta+d \sin ^{2} \theta+(b+c) \sin \theta \cos \theta\right) \\
\theta^{\prime}(t) & =c \cos \cos ^{2} \theta-b \sin ^{2} \theta+(d-a) \sin \theta \cos \theta
\end{aligned}
$$

Example. Page 106 Number 2.

