Section 2.2. Phase Plane

Note. In this section we define the phase plane and classify equilibrium points as stable or unstable.

Note. In the previous section we considered the IVP:

\[
\begin{align*}
 x' &= f(x, y) \\
 y' &= g(x, y)
\end{align*}
\] (1.2)

\[x(t_0) = \alpha, y(t_0) = \beta\]

where \(t = \frac{d}{dt} \). Solutions to (1.2) (guaranteed to exist by Theorem 2.1.1) can be viewed as triples \((t, x(t), y(t))\) in \(\mathbb{R}^3 \) or as curves \((x(t), y(t))\) in \(\mathbb{R}^2 \) which are given parametrically.

Definition. The phase plane associated with (1.2) is the \((x, y)\) plane and the curve \((x(t), y(t))\) is a trajectory of (1.2) which passes through \((\alpha, \beta)\) when \(t = 0\).

Lemma 2.2.1. If \((\varphi_1(t), \varphi_2(t))\) is a solution of (1.2), then so is \((\varphi_1(t-\tau), \varphi_2(t-\tau))\) for any \(\tau \in \mathbb{R}\).

Theorem 2.2.2. Let \(f\) and \(g\) be continuously differentiable. Through each point \((x_0, y_0)\) there is a unique trajectory of

\[
\begin{align*}
 x' &= f(x, y) \\
 y' &= g(x, y)
\end{align*}
\]
2.2. Phase Plane

Note. The two dimensional system \(x' = f(x, y) \) is equivalent to (by the Chain Rule):
\[
\frac{dy}{dx} = \frac{dy}{dt} \frac{1}{dx/dt} = \frac{g(x, y)}{f(x, y)}.
\]

Definition. A two dimensional system which can be written \(x' = f(x, y) \) (where \(y' = g(x, y) \).
\(t = d/dt \)) is an autonomous system (that is, the derivatives of \(x \) and \(y \) do not depend explicitly on \(t \). In other words, the system changes according to the state it is in and is independent of “time”).

Definition. For the system (1.2), \((x_0, y_0)\) is a critical point if \(f(x_0, y_0) = g(x_0, y_0) = 0 \). This is also called an equilibrium solution or a stationary solution.

Theorem 2.2.A. The only trajectory which passes through a critical point \((x_0, y_0)\) is the constant solution \(x = x_0, y = y_0 \).

Example. Page 107 Number 6d.

Definition. A critical point \((x_0, y_0)\) of (1.2) is stable if for all \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that if \((x(t), y(t))\) is a solution of (1.2) and if \(\|(x(t_0), y(t_0)) - (x_0, y_0)\| < \delta \) then \(\|(x(t), y(t)) - (x_0, y_0)\| < \varepsilon \) for all \(t \geq t_0 \). A critical point that is not stable is unstable.
2.2. Phase Plane

Definition. A stable critical point is *asymptotically stable* if there exists \(\eta > 0 \) such that if \(\| (x(t_0), y(t_0)) - (x_0, y_0) \| < \eta \) then \(\lim_{t \to \infty} (x(t), y(t)) = (x_0, y_0) \).

Note. If we represent \(x' = ax + by \) in polar coordinates, then we find that \(x = r \cos \theta, \ y = r \sin \theta \) implies

\[
\begin{align*}
r' &= r(a \cos^2 \theta + d \sin^2 \theta + (b + c) \sin \theta \cos \theta) \\
\theta' &= c \cos^2 \theta - b \sin^2 \theta + (d - a) \sin \theta \cos \theta.
\end{align*}
\]

Example. Page 106 Number 2.

Note. If we let \(\varphi_1(r) = r(t) \cos \theta(t) \) be a solution of \(x' = ax + by \) then \(\varphi_2(t) = r(t) \sin \theta(t) \) be a solution of \(y' = cx + dy \) then

\[
\begin{align*}
\varphi_1(t) &= ar(t) \cos \theta(t) + br(t) \sin \theta(t) \\
\varphi_2(t) &= cr(t) \cos \theta(t) + dr(t) \sin \theta(t)
\end{align*}
\]

or

\[
\begin{align*}
r'(t) &= r(a \cos^2 \theta + d \sin^2 \theta + (b + c) \sin \theta \cos \theta) \\
\theta'(t) &= c \cos^2 \theta - b \sin^2 \theta + (d - a) \sin \theta \cos \theta.
\end{align*}
\]

Example. Page 106 Number 2.